General Information of Drug Off-Target (DOT) (ID: OT6B22QH)

DOT Name Cystic fibrosis transmembrane conductance regulator (CFTR)
Synonyms CFTR; ATP-binding cassette sub-family C member 7; Channel conductance-controlling ATPase; EC 5.6.1.6; cAMP-dependent chloride channel
Gene Name CFTR
Related Disease
Cystic fibrosis ( )
Congenital bilateral absence of vas deferens ( )
Hereditary chronic pancreatitis ( )
UniProt ID
CFTR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1XMI ; 1XMJ ; 2BBO ; 2BBS ; 2BBT ; 2LOB ; 2PZE ; 2PZF ; 2PZG ; 3GD7 ; 3ISW ; 4WZ6 ; 5D2D ; 5D3E ; 5D3F ; 5TF7 ; 5TF8 ; 5TFA ; 5TFB ; 5TFC ; 5TFD ; 5TFF ; 5TFG ; 5TFI ; 5TFJ ; 5TGK ; 5UAK ; 6GJQ ; 6GJS ; 6GJU ; 6GK4 ; 6GKD ; 6HEP ; 6MSM ; 6O1V ; 6O2P ; 6UK1 ; 6WBS ; 6ZE1 ; 7QI1 ; 7SV7 ; 7SVD ; 7SVR ; 8EIG ; 8EIO ; 8EIQ ; 8EJ1 ; 8FZQ
EC Number
5.6.1.6
Pfam ID
PF00664 ; PF00005 ; PF14396
Sequence
MQRSPLEKASVVSKLFFSWTRPILRKGYRQRLELSDIYQIPSVDSADNLSEKLEREWDRE
LASKKNPKLINALRRCFFWRFMFYGIFLYLGEVTKAVQPLLLGRIIASYDPDNKEERSIA
IYLGIGLCLLFIVRTLLLHPAIFGLHHIGMQMRIAMFSLIYKKTLKLSSRVLDKISIGQL
VSLLSNNLNKFDEGLALAHFVWIAPLQVALLMGLIWELLQASAFCGLGFLIVLALFQAGL
GRMMMKYRDQRAGKISERLVITSEMIENIQSVKAYCWEEAMEKMIENLRQTELKLTRKAA
YVRYFNSSAFFFSGFFVVFLSVLPYALIKGIILRKIFTTISFCIVLRMAVTRQFPWAVQT
WYDSLGAINKIQDFLQKQEYKTLEYNLTTTEVVMENVTAFWEEGFGELFEKAKQNNNNRK
TSNGDDSLFFSNFSLLGTPVLKDINFKIERGQLLAVAGSTGAGKTSLLMVIMGELEPSEG
KIKHSGRISFCSQFSWIMPGTIKENIIFGVSYDEYRYRSVIKACQLEEDISKFAEKDNIV
LGEGGITLSGGQRARISLARAVYKDADLYLLDSPFGYLDVLTEKEIFESCVCKLMANKTR
ILVTSKMEHLKKADKILILHEGSSYFYGTFSELQNLQPDFSSKLMGCDSFDQFSAERRNS
ILTETLHRFSLEGDAPVSWTETKKQSFKQTGEFGEKRKNSILNPINSIRKFSIVQKTPLQ
MNGIEEDSDEPLERRLSLVPDSEQGEAILPRISVISTGPTLQARRRQSVLNLMTHSVNQG
QNIHRKTTASTRKVSLAPQANLTELDIYSRRLSQETGLEISEEINEEDLKECFFDDMESI
PAVTTWNTYLRYITVHKSLIFVLIWCLVIFLAEVAASLVVLWLLGNTPLQDKGNSTHSRN
NSYAVIITSTSSYYVFYIYVGVADTLLAMGFFRGLPLVHTLITVSKILHHKMLHSVLQAP
MSTLNTLKAGGILNRFSKDIAILDDLLPLTIFDFIQLLLIVIGAIAVVAVLQPYIFVATV
PVIVAFIMLRAYFLQTSQQLKQLESEGRSPIFTHLVTSLKGLWTLRAFGRQPYFETLFHK
ALNLHTANWFLYLSTLRWFQMRIEMIFVIFFIAVTFISILTTGEGEGRVGIILTLAMNIM
STLQWAVNSSIDVDSLMRSVSRVFKFIDMPTEGKPTKSTKPYKNGQLSKVMIIENSHVKK
DDIWPSGGQMTVKDLTAKYTEGGNAILENISFSISPGQRVGLLGRTGSGKSTLLSAFLRL
LNTEGEIQIDGVSWDSITLQQWRKAFGVIPQKVFIFSGTFRKNLDPYEQWSDQEIWKVAD
EVGLRSVIEQFPGKLDFVLVDGGCVLSHGHKQLMCLARSVLSKAKILLLDEPSAHLDPVT
YQIIRRTLKQAFADCTVILCEHRIEAMLECQQFLVIEENKVRQYDSIQKLLNERSLFRQA
ISPSDRVKLFPHRNSSKCKSKPQIAALKEETEEEVQDTRL
Function
Epithelial ion channel that plays an important role in the regulation of epithelial ion and water transport and fluid homeostasis. Mediates the transport of chloride ions across the cell membrane. Channel activity is coupled to ATP hydrolysis. The ion channel is also permeable to HCO(3)(-); selectivity depends on the extracellular chloride concentration. Exerts its function also by modulating the activity of other ion channels and transporters. Plays an important role in airway fluid homeostasis. Contributes to the regulation of the pH and the ion content of the airway surface fluid layer and thereby plays an important role in defense against pathogens. Modulates the activity of the epithelial sodium channel (ENaC) complex, in part by regulating the cell surface expression of the ENaC complex. Inhibits the activity of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G. Inhibits the activity of the ENaC channel containing subunits SCNN1D, SCNN1B and SCNN1G, but not of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G. May regulate bicarbonate secretion and salvage in epithelial cells by regulating the transporter SLC4A7. Can inhibit the chloride channel activity of ANO1. Plays a role in the chloride and bicarbonate homeostasis during sperm epididymal maturation and capacitation.
Tissue Specificity
Expressed in the respiratory airway, including bronchial epithelium, and in the female reproductive tract, including oviduct (at protein level) . Detected in pancreatic intercalated ducts in the exocrine tissue, on epithelial cells in intralobular striated ducts in sublingual salivary glands, on apical membranes of crypt cells throughout the small and large intestine, and on the reabsorptive duct in eccrine sweat glands . Detected on the equatorial segment of the sperm head (at protein level) . Detected in nasal and bronchial superficial epithelium . Expressed by the central cells on the sebaceous glands, dermal adipocytes and, at lower levels, by epithelial cells .
KEGG Pathway
ABC transporters (hsa02010 )
cAMP sig.ling pathway (hsa04024 )
AMPK sig.ling pathway (hsa04152 )
Tight junction (hsa04530 )
Gastric acid secretion (hsa04971 )
Pancreatic secretion (hsa04972 )
Bile secretion (hsa04976 )
Vibrio cholerae infection (hsa05110 )
Reactome Pathway
RHO GTPases regulate CFTR trafficking (R-HSA-5627083 )
Defective CFTR causes cystic fibrosis (R-HSA-5678895 )
Ub-specific processing proteases (R-HSA-5689880 )
Cargo recognition for clathrin-mediated endocytosis (R-HSA-8856825 )
Clathrin-mediated endocytosis (R-HSA-8856828 )
RHOQ GTPase cycle (R-HSA-9013406 )
Chaperone Mediated Autophagy (R-HSA-9613829 )
Late endosomal microautophagy (R-HSA-9615710 )
Aggrephagy (R-HSA-9646399 )
ABC-family proteins mediated transport (R-HSA-382556 )
BioCyc Pathway
MetaCyc:HS00075-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cystic fibrosis DIS2OK1Q Definitive Autosomal recessive [1]
Congenital bilateral absence of vas deferens DISR15UU Supportive Autosomal recessive [2]
Hereditary chronic pancreatitis DISF0J1Q Limited Autosomal dominant [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Chloride DM1TJXA Phase 3 Cystic fibrosis transmembrane conductance regulator (CFTR) decreases the secretion of Chloride. [50]
------------------------------------------------------------------------------------
59 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [7]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [8]
Quercetin DM3NC4M Approved Quercetin increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [9]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [10]
Progesterone DMUY35B Approved Progesterone decreases the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [7]
Vitamin C DMXJ7O8 Approved Vitamin C increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [11]
Sodium phenylbutyrate DMXLBCQ Approved Sodium phenylbutyrate increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [9]
Isoproterenol DMK7MEY Approved Isoproterenol increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [12]
Adenosine DMM2NSK Approved Adenosine increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [12]
Gentamicin DMKINJO Approved Gentamicin increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [13]
Glutathione DMAHMT9 Approved Glutathione decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [14]
Cilostazol DMZMSCT Approved Cilostazol increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [15]
Glibenclamide DM8JXPZ Approved Glibenclamide decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [16]
Niflumic acid DMJ3I1Q Approved Niflumic acid decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [17]
Flufenamic Acid DMC8VNH Approved Flufenamic Acid decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [18]
Nimodipine DMQ0RKZ Approved Nimodipine increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [19]
Oxidized glutathione DM9EQC0 Approved Oxidized glutathione decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [14]
Salmeterol DMIEU69 Approved Salmeterol increases the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [20]
Rhucin DM3ADGP Approved Rhucin increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [15]
Bumetanide DMRV7H0 Approved Bumetanide decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [21]
Papaverine DMCA9QP Approved Papaverine increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [15]
Milrinone DM8TUPF Approved Milrinone increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [15]
Desmopressin DMS3GVE Approved Desmopressin increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [22]
Ivacaftor DMZC1HS Approved Ivacaftor increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [23]
Miglustat DM5J64S Approved Miglustat increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [24]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [25]
Curcumin DMQPH29 Phase 3 Curcumin increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [26]
Genistein DM0JETC Phase 2/3 Genistein increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [27]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [28]
BAICALEIN DM4C7E6 Phase 2 BAICALEIN increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [29]
SSR149415 DMCMD93 Phase 2 SSR149415 decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [22]
Tetramethylpyrazine DMC0WNB Discontinued in Phase 2 Tetramethylpyrazine increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [32]
Trequinsin DMQRSMD Terminated Trequinsin increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [33]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [35]
Lithium chloride DMHYLQ2 Investigative Lithium chloride increases the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [36]
Forskolin DM6ITNG Investigative Forskolin increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [37]
Okadaic acid DM47CO1 Investigative Okadaic acid decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [38]
Apigenin DMI3491 Investigative Apigenin increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [18]
PD98059 DMZC90M Investigative PD98059 decreases the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [39]
[3H]cAMP DMZRQU7 Investigative [3H]cAMP increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [40]
Serotonin DMOFCRY Investigative Serotonin increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [41]
Nitrosoglutathione DMZ9WI4 Investigative Nitrosoglutathione decreases the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [42]
H-89 DM4RVGO Investigative H-89 decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [43]
G418 DMKTJBU Investigative G418 increases the expression of Cystic fibrosis transmembrane conductance regulator (CFTR). [44]
ROLIPRAM DMJ03UM Investigative ROLIPRAM decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [45]
isobutylmethylxanthine DM46F5X Investigative isobutylmethylxanthine increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [27]
Chelerythrine DMCP1G9 Investigative Chelerythrine decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [43]
Bicarbonate DMT5E36 Investigative Bicarbonate decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [46]
NPPB DMFIWAN Investigative NPPB decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [21]
[3H]CGP12177 DMZN1A3 Investigative [3H]CGP12177 increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [47]
CFTRinh-172 DM8TJW3 Investigative CFTRinh-172 decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [21]
diphenylamine-2-carboxylic acid DMBV19T Investigative diphenylamine-2-carboxylic acid decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [16]
Nitrate DMVFB93 Investigative Nitrate decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [46]
Octanol DMBGHPE Investigative Octanol increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [48]
9-anthroic acid DMGCVT2 Investigative 9-anthroic acid decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [49]
AMP-PNP DMTOK1D Investigative AMP-PNP affects the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [14]
Phorbol 12-myristate DM096SC Investigative Phorbol 12-myristate increases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [40]
Relcovaptan DM3AWPB Investigative Relcovaptan decreases the activity of Cystic fibrosis transmembrane conductance regulator (CFTR). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 59 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the methylation of Cystic fibrosis transmembrane conductance regulator (CFTR). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the ubiquitination of Cystic fibrosis transmembrane conductance regulator (CFTR). [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Cystic fibrosis transmembrane conductance regulator (CFTR). [31]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Cystic fibrosis transmembrane conductance regulator (CFTR). [34]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Lumacaftor DMCLWDJ Phase 2 Lumacaftor affects the folding of Cystic fibrosis transmembrane conductance regulator (CFTR). [30]
Kaempferol DMHEMUB Investigative Kaempferol affects the localization of Cystic fibrosis transmembrane conductance regulator (CFTR). [9]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Structural analysis of CFTR gene in congenital bilateral absence of vas deferens. Clin Chem. 1995 Jun;41(6 Pt 1):833-5.
3 A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature. 1990 Jul 26;346(6282):366-9. doi: 10.1038/346366a0.
4 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
5 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
6 Altered biogenesis of deltaF508-CFTR following treatment with doxorubicin. Cell Physiol Biochem. 2007;20(5):465-72. doi: 10.1159/000107530.
7 Expression of cystic fibrosis transmembrane conductance regulator in human endometrium. Hum Reprod. 2004 Dec;19(12):2933-41. doi: 10.1093/humrep/deh507. Epub 2004 Oct 7.
8 Inorganic arsenic exposure promotes malignant progression by HDAC6-mediated down-regulation of HTRA1. J Appl Toxicol. 2023 Aug;43(8):1214-1224. doi: 10.1002/jat.4457. Epub 2023 Mar 11.
9 Modulation of deltaF508 cystic fibrosis transmembrane regulator trafficking and function with 4-phenylbutyrate and flavonoids. Am J Respir Cell Mol Biol. 2004 Sep;31(3):351-7. doi: 10.1165/rcmb.2002-0086OC. Epub 2004 Jun 10.
10 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
11 Vitamin C controls the cystic fibrosis transmembrane conductance regulator chloride channel. Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3691-6. doi: 10.1073/pnas.0308393100. Epub 2004 Mar 1.
12 Activation of airway cl- secretion in human subjects by adenosine. Am J Respir Cell Mol Biol. 2004 Aug;31(2):140-6. doi: 10.1165/rcmb.2004-0012OC. Epub 2004 Mar 23.
13 Correction of CFTR malfunction and stimulation of Ca-activated Cl channels restore HCO3- secretion in cystic fibrosis bile ductular cells. Hepatology. 2002 Jan;35(1):95-104. doi: 10.1053/jhep.2002.30423.
14 Reversible silencing of CFTR chloride channels by glutathionylation. J Gen Physiol. 2005 Feb;125(2):127-41. doi: 10.1085/jgp.200409115. Epub 2005 Jan 18.
15 Adenosine receptors and phosphodiesterase inhibitors stimulate Cl- secretion in Calu-3 cells. Am J Respir Cell Mol Biol. 2003 Sep;29(3 Pt 1):410-8. doi: 10.1165/rcmb.2002-0247OC. Epub 2003 Apr 24.
16 Comparative pharmacology of the activity of wild-type and G551D mutated CFTR chloride channel: effect of the benzimidazolone derivative NS004. J Membr Biol. 2003 Jul 15;194(2):109-17. doi: 10.1007/s00232-003-2030-z.
17 Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid. Mol Membr Biol. 2004 Jan-Feb;21(1):27-38. doi: 10.1080/09687680310001597758.
18 Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol. 2004 Aug;124(2):125-37. doi: 10.1085/jgp.200409059.
19 Nimodipine inhibits intestinal and aortic smooth muscle contraction by regulating Ca(2+)-activated Cl(-) channels. Toxicol Appl Pharmacol. 2021 Jun 15;421:115543. doi: 10.1016/j.taap.2021.115543. Epub 2021 Apr 16.
20 Stimulation of beta 2-adrenergic receptor increases cystic fibrosis transmembrane conductance regulator expression in human airway epithelial cells through a cAMP/protein kinase A-independent pathway. J Biol Chem. 2003 May 9;278(19):17320-7. doi: 10.1074/jbc.M212227200. Epub 2003 Mar 5.
21 Effects of a new cystic fibrosis transmembrane conductance regulator inhibitor on Cl- conductance in human sweat ducts. Exp Physiol. 2004 Jul;89(4):417-25. doi: 10.1113/expphysiol.2003.027003. Epub 2004 May 6.
22 Vasotocin and vasopressin stimulation of the chloride secretion in the human bronchial epithelial cell line, 16HBE14o-. Br J Pharmacol. 2005 Apr;144(8):1037-50. doi: 10.1038/sj.bjp.0706103.
23 Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 2010 Nov 18;363(21):1991-2003. doi: 10.1056/NEJMoa0909825.
24 Proteasome-dependent pharmacological rescue of cystic fibrosis transmembrane conductance regulator revealed by mutation of glycine 622. J Pharmacol Exp Ther. 2008 Apr;325(1):89-99. doi: 10.1124/jpet.107.134502. Epub 2008 Jan 29.
25 Resveratrol enhances airway surface liquid depth in sinonasal epithelium by increasing cystic fibrosis transmembrane conductance regulator open probability. PLoS One. 2013 Nov 25;8(11):e81589. doi: 10.1371/journal.pone.0081589. eCollection 2013.
26 Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity. J Biol Chem. 2005 Feb 18;280(7):5221-6. doi: 10.1074/jbc.M412972200. Epub 2004 Dec 6.
27 Activation of CFTR by genistein in human airway epithelial cell lines. Biochem Biophys Res Commun. 2003 Aug 29;308(3):518-22. doi: 10.1016/s0006-291x(03)01436-0.
28 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
29 Cellular mechanism for potentiation of Ca2+-mediated Cl- secretion by the flavonoid baicalein in intestinal epithelia. J Biol Chem. 2004 Sep 17;279(38):39310-6. doi: 10.1074/jbc.M406787200. Epub 2004 Jul 3.
30 Novel Therapy of Bicarbonate, Glutathione, and Ascorbic Acid Improves Cystic Fibrosis Mucus Transport. Am J Respir Cell Mol Biol. 2020 Sep;63(3):362-373. doi: 10.1165/rcmb.2019-0287OC.
31 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
32 Activation of apical CFTR and basolateral Ca(2+)-activated K+ channels by tetramethylpyrazine in Caco-2 cell line. Eur J Pharmacol. 2005 Mar 14;510(3):187-95. doi: 10.1016/j.ejphar.2005.01.026.
33 Dynamic activation of cystic fibrosis transmembrane conductance regulator by type 3 and type 4D phosphodiesterase inhibitors. J Pharmacol Exp Ther. 2005 Aug;314(2):846-54. doi: 10.1124/jpet.105.083519. Epub 2005 May 18.
34 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
35 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
36 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.
37 Synthesis and properties of molecular probes for the rescue site on mutant cystic fibrosis transmembrane conductance regulator. J Med Chem. 2011 Dec 22;54(24):8693-701. doi: 10.1021/jm201335c. Epub 2011 Nov 21.
38 Interaction of the protein phosphatase 2A with the regulatory domain of the cystic fibrosis transmembrane conductance regulator channel. FEBS Lett. 2005 Jun 20;579(16):3392-6. doi: 10.1016/j.febslet.2005.04.079.
39 Molecular dissection of the butyrate action revealed the involvement of mitogen-activated protein kinase in cystic fibrosis transmembrane conductance regulator biogenesis. Mol Pharmacol. 2004 Nov;66(5):1248-59. doi: 10.1124/mol.104.001008. Epub 2004 Aug 10.
40 Mechanism of activation of Xenopus CFTR by stimulation of PKC. Am J Physiol Cell Physiol. 2004 Nov;287(5):C1256-63. doi: 10.1152/ajpcell.00229.2004. Epub 2004 Jun 30.
41 Involvement of G protein betagamma-subunits in diverse signaling induced by G(i/o)-coupled receptors: study using the Xenopus oocyte expression system. Am J Physiol Cell Physiol. 2004 Oct;287(4):C885-94. doi: 10.1152/ajpcell.00125.2004. Epub 2004 May 19.
42 Concentration-dependent effects of endogenous S-nitrosoglutathione on gene regulation by specificity proteins Sp3 and Sp1. Biochem J. 2004 May 15;380(Pt 1):67-74. doi: 10.1042/BJ20031687.
43 Activation of VPAC1 receptors by VIP and PACAP-27 in human bronchial epithelial cells induces CFTR-dependent chloride secretion. Br J Pharmacol. 2004 Feb;141(4):698-708. doi: 10.1038/sj.bjp.0705597. Epub 2004 Jan 26.
44 Restoration of W1282X CFTR activity by enhanced expression. Am J Respir Cell Mol Biol. 2007 Sep;37(3):347-56. doi: 10.1165/rcmb.2006-0176OC. Epub 2007 May 31.
45 Phosphodiesterase 4D forms a cAMP diffusion barrier at the apical membrane of the airway epithelium. J Biol Chem. 2005 Mar 4;280(9):7997-8003. doi: 10.1074/jbc.M407521200. Epub 2004 Dec 15.
46 Novel regulation of cystic fibrosis transmembrane conductance regulator (CFTR) channel gating by external chloride. J Biol Chem. 2004 Oct 1;279(40):41658-63. doi: 10.1074/jbc.M405517200. Epub 2004 Jul 31.
47 Transfected beta3- but not beta2-adrenergic receptors regulate cystic fibrosis transmembrane conductance regulator activity via a new pathway involving the mitogen-activated protein kinases extracellular signal-regulated kinases. Mol Pharmacol. 2005 Mar;67(3):648-54. doi: 10.1124/mol.104.002097. Epub 2004 Nov 24.
48 General anesthetic octanol and related compounds activate wild-type and delF508 cystic fibrosis chloride channels. Br J Pharmacol. 2004 Mar;141(6):905-14. doi: 10.1038/sj.bjp.0705684. Epub 2004 Feb 16.
49 Direct effects of 9-anthracene compounds on cystic fibrosis transmembrane conductance regulator gating. Pflugers Arch. 2004 Oct;449(1):88-95. doi: 10.1007/s00424-004-1317-y.
50 Increase in intracellular Cl- concentration by cAMP- and Ca2+-dependent stimulation of M1 collecting duct cells. Pflugers Arch. 2005 Feb;449(5):470-8. doi: 10.1007/s00424-004-1356-4. Epub 2004 Oct 29.