General Information of Drug Off-Target (DOT) (ID: OT7Z2YRP)

DOT Name A-kinase anchor protein 9 (AKAP9)
Synonyms
AKAP-9; A-kinase anchor protein 350 kDa; AKAP 350; hgAKAP 350; A-kinase anchor protein 450 kDa; AKAP 450; AKAP 120-like protein; Centrosome- and Golgi-localized PKN-associated protein; CG-NAP; Protein hyperion; Protein kinase A-anchoring protein 9; PRKA9; Protein yotiao
Gene Name AKAP9
Related Disease
Melanoma ( )
Thyroid tumor ( )
Alzheimer disease ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Brugada syndrome ( )
Familial long QT syndrome ( )
Hypertrophic cardiomyopathy ( )
Neoplasm ( )
Schizophrenia ( )
Skin disease ( )
Thyroid cancer ( )
Thyroid gland carcinoma ( )
Thyroid gland papillary carcinoma ( )
Advanced cancer ( )
Obsolete male infertility with azoospermia or oligozoospermia due to single gene mutation ( )
Long QT syndrome ( )
Colorectal carcinoma ( )
Long QT syndrome 11 ( )
UniProt ID
AKAP9_HUMAN
Pfam ID
PF10495
Sequence
MEDEERQKKLEAGKAKLAQFRQRKAQSDGQSPSKKQKKKRKTSSSKHDVSAHHDLNIDQS
QCNEMYINSSQRVESTVIPESTIMRTLHSGEITSHEQGFSVELESEISTTADDCSSEVNG
CSFVMRTGKPTNLLREEEFGVDDSYSEQGAQDSPTHLEMMESELAGKQHEIEELNRELEE
MRVTYGTEGLQQLQEFEAAIKQRDGIITQLTANLQQARREKDETMREFLELTEQSQKLQI
QFQQLQASETLRNSTHSSTAADLLQAKQQILTHQQQLEEQDHLLEDYQKKKEDFTMQISF
LQEKIKVYEMEQDKKVENSNKEEIQEKETIIEELNTKIIEEEKKTLELKDKLTTADKLLG
ELQEQIVQKNQEIKNMKLELTNSKQKERQSSEEIKQLMGTVEELQKRNHKDSQFETDIVQ
RMEQETQRKLEQLRAELDEMYGQQIVQMKQELIRQHMAQMEEMKTRHKGEMENALRSYSN
ITVNEDQIKLMNVAINELNIKLQDTNSQKEKLKEELGLILEEKCALQRQLEDLVEELSFS
REQIQRARQTIAEQESKLNEAHKSLSTVEDLKAEIVSASESRKELELKHEAEVTNYKIKL
EMLEKEKNAVLDRMAESQEAELERLRTQLLFSHEEELSKLKEDLEIEHRINIEKLKDNLG
IHYKQQIDGLQNEMSQKIETMQFEKDNLITKQNQLILEISKLKDLQQSLVNSKSEEMTLQ
INELQKEIEILRQEEKEKGTLEQEVQELQLKTELLEKQMKEKENDLQEKFAQLEAENSIL
KDEKKTLEDMLKIHTPVSQEERLIFLDSIKSKSKDSVWEKEIEILIEENEDLKQQCIQLN
EEIEKQRNTFSFAEKNFEVNYQELQEEYACLLKVKDDLEDSKNKQELEYKSKLKALNEEL
HLQRINPTTVKMKSSVFDEDKTFVAETLEMGEVVEKDTTELMEKLEVTKREKLELSQRLS
DLSEQLKQKHGEISFLNEEVKSLKQEKEQVSLRCRELEIIINHNRAENVQSCDTQVSSLL
DGVVTMTSRGAEGSVSKVNKSFGEESKIMVEDKVSFENMTVGEESKQEQLILDHLPSVTK
ESSLRATQPSENDKLQKELNVLKSEQNDLRLQMEAQRICLSLVYSTHVDQVREYMENEKD
KALCSLKEELIFAQEEKIKELQKIHQLELQTMKTQETGDEGKPLHLLIGKLQKAVSEECS
YFLQTLCSVLGEYYTPALKCEVNAEDKENSGDYISENEDPELQDYRYEVQDFQENMHTLL
NKVTEEYNKLLVLQTRLSKIWGQQTDGMKLEFGEENLPKEETEFLSIHSQMTNLEDIDVN
HKSKLSSLQDLEKTKLEEQVQELESLISSLQQQLKETEQNYEAEIHCLQKRLQAVSESTV
PPSLPVDSVVITESDAQRTMYPGSCVKKNIDGTIEFSGEFGVKEETNIVKLLEKQYQEQL
EEEVAKVIVSMSIAFAQQTELSRISGGKENTASSKQAHAVCQQEQHYFNEMKLSQDQIGF
QTFETVDVKFKEEFKPLSKELGEHGKEILLSNSDPHDIPESKDCVLTISEEMFSKDKTFI
VRQSIHDEISVSSMDASRQLMLNEEQLEDMRQELVRQYQEHQQATELLRQAHMRQMERQR
EDQEQLQEEIKRLNRQLAQRSSIDNENLVSERERVLLEELEALKQLSLAGREKLCCELRN
SSTQTQNGNENQGEVEEQTFKEKELDRKPEDVPPEILSNERYALQKANNRLLKILLEVVK
TTAAVEETIGRHVLGILDRSSKSQSSASLIWRSEAEASVKSCVHEEHTRVTDESIPSYSG
SDMPRNDINMWSKVTEEGTELSQRLVRSGFAGTEIDPENEELMLNISSRLQAAVEKLLEA
ISETSSQLEHAKVTQTELMRESFRQKQEATESLKCQEELRERLHEESRAREQLAVELSKA
EGVIDGYADEKTLFERQIQEKTDIIDRLEQELLCASNRLQELEAEQQQIQEERELLSRQK
EAMKAEAGPVEQQLLQETEKLMKEKLEVQCQAEKVRDDLQKQVKALEIDVEEQVSRFIEL
EQEKNTELMDLRQQNQALEKQLEKMRKFLDEQAIDREHERDVFQQEIQKLEQQLKVVPRF
QPISEHQTREVEQLANHLKEKTDKCSELLLSKEQLQRDIQERNEEIEKLEFRVRELEQAL
LVSADTFQKVEDRKHFGAVEAKPELSLEVQLQAERDAIDRKEKEITNLEEQLEQFREELE
NKNEEVQQLHMQLEIQKKESTTRLQELEQENKLFKDDMEKLGLAIKESDAMSTQDQHVLF
GKFAQIIQEKEVEIDQLNEQVTKLQQQLKITTDNKVIEEKNELIRDLETQIECLMSDQEC
VKRNREEEIEQLNEVIEKLQQELANIGQKTSMNAHSLSEEADSLKHQLDVVIAEKLALEQ
QVETANEEMTFMKNVLKETNFKMNQLTQELFSLKRERESVEKIQSIPENSVNVAIDHLSK
DKPELEVVLTEDALKSLENQTYFKSFEENGKGSIINLETRLLQLESTVSAKDLELTQCYK
QIKDMQEQGQFETEMLQKKIVNLQKIVEEKVAAALVSQIQLEAVQEYAKFCQDNQTISSE
PERTNIQNLNQLREDELGSDISALTLRISELESQVVEMHTSLILEKEQVEIAEKNVLEKE
KKLLELQKLLEGNEKKQREKEKKRSPQDVEVLKTTTELFHSNEESGFFNELEALRAESVA
TKAELASYKEKAEKLQEELLVKETNMTSLQKDLSQVRDHLAEAKEKLSILEKEDETEVQE
SKKACMFEPLPIKLSKSIASQTDGTLKISSSNQTPQILVKNAGIQINLQSECSSEEVTEI
ISQFTEKIEKMQELHAAEILDMESRHISETETLKREHYVAVQLLKEECGTLKAVIQCLRS
KEGSSIPELAHSDAYQTREICSSDSGSDWGQGIYLTHSQGFDIASEGRGEESESATDSFP
KKIKGLLRAVHNEGMQVLSLTESPYSDGEDHSIQQVSEPWLEERKAYINTISSLKDLITK
MQLQREAEVYDSSQSHESFSDWRGELLLALQQVFLEERSVLLAAFRTELTALGTTDAVGL
LNCLEQRIQEQGVEYQAAMECLQKADRRSLLSEIQALHAQMNGRKITLKREQESEKPSQE
LLEYNIQQKQSQMLEMQVELSSMKDRATELQEQLSSEKMVVAELKSELAQTKLELETTLK
AQHKHLKELEAFRLEVKDKTDEVHLLNDTLASEQKKSRELQWALEKEKAKLGRSEERDKE
ELEDLKFSLESQKQRNLQLNLLLEQQKQLLNESQQKIESQRMLYDAQLSEEQGRNLELQV
LLESEKVRIREMSSTLDRERELHAQLQSSDGTGQSRPPLPSEDLLKELQKQLEEKHSRIV
ELLNETEKYKLDSLQTRQQMEKDRQVHRKTLQTEQEANTEGQKKMHELQSKVEDLQRQLE
EKRQQVYKLDLEGQRLQGIMQEFQKQELEREEKRESRRILYQNLNEPTTWSLTSDRTRNW
VLQQKIEGETKESNYAKLIEMNGGGTGCNHELEMIRQKLQCVASKLQVLPQKASERLQFE
TADDEDFIWVQENIDEIILQLQKLTGQQGEEPSLVSPSTSCGSLTERLLRQNAELTGHIS
QLTEEKNDLRNMVMKLEEQIRWYRQTGAGRDNSSRFSLNGGANIEAIIASEKEVWNREKL
TLQKSLKRAEAEVYKLKAELRNDSLLQTLSPDSEHVTLKRIYGKYLRAESFRKALIYQKK
YLLLLLGGFQECEDATLALLARMGGQPAFTDLEVITNRPKGFTRFRSAVRVSIAISRMKF
LVRRWHRVTGSVSININRDGFGLNQGAEKTDSFYHSSGGLELYGEPRHTTYRSRSDLDYI
RSPLPFQNRYPGTPADFNPGSLACSQLQNYDPDRALTDYITRLEALQRRLGTIQSGSTTQ
FHAGMRR
Function
Scaffolding protein that assembles several protein kinases and phosphatases on the centrosome and Golgi apparatus. Required to maintain the integrity of the Golgi apparatus. Required for microtubule nucleation at the cis-side of the Golgi apparatus. Required for association of the centrosomes with the poles of the bipolar mitotic spindle during metaphase. In complex with PDE4DIP isoform 13/MMG8/SMYLE, recruits CAMSAP2 to the Golgi apparatus and tethers non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement. In complex with PDE4DIP isoform 13/MMG8/SMYLE, EB1/MAPRE1 and CDK5RAP2, contributes to microtubules nucleation and extension also from the centrosome to the cell periphery ; [Isoform 4]: Associated with the N-methyl-D-aspartate receptor and is specifically found in the neuromuscular junction (NMJ) as well as in neuronal synapses, suggesting a role in the organization of postsynaptic specializations.
Tissue Specificity Widely expressed . Isoform 4: Highly expressed in skeletal muscle and in pancreas .
Reactome Pathway
Loss of Nlp from mitotic centrosomes (R-HSA-380259 )
Recruitment of mitotic centrosome proteins and complexes (R-HSA-380270 )
Loss of proteins required for interphase microtubule organization from the centrosome (R-HSA-380284 )
Recruitment of NuMA to mitotic centrosomes (R-HSA-380320 )
Phase 3 - rapid repolarisation (R-HSA-5576890 )
Phase 2 - plateau phase (R-HSA-5576893 )
Anchoring of the basal body to the plasma membrane (R-HSA-5620912 )
Signaling by BRAF and RAF1 fusions (R-HSA-6802952 )
AURKA Activation by TPX2 (R-HSA-8854518 )
Regulation of PLK1 Activity at G2/M Transition (R-HSA-2565942 )

Molecular Interaction Atlas (MIA) of This DOT

20 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Melanoma DIS1RRCY Definitive Genetic Variation [1]
Thyroid tumor DISLVKMD Definitive Biomarker [2]
Alzheimer disease DISF8S70 Strong Genetic Variation [3]
Breast cancer DIS7DPX1 Strong Biomarker [4]
Breast carcinoma DIS2UE88 Strong Biomarker [4]
Breast neoplasm DISNGJLM Strong Genetic Variation [5]
Brugada syndrome DISSGN0E Strong Biomarker [6]
Familial long QT syndrome DISRNNCY Strong Biomarker [7]
Hypertrophic cardiomyopathy DISQG2AI Strong Genetic Variation [8]
Neoplasm DISZKGEW Strong Biomarker [9]
Schizophrenia DISSRV2N Strong Genetic Variation [10]
Skin disease DISDW8R6 Strong Biomarker [11]
Thyroid cancer DIS3VLDH Strong Biomarker [12]
Thyroid gland carcinoma DISMNGZ0 Strong Biomarker [12]
Thyroid gland papillary carcinoma DIS48YMM Strong Biomarker [13]
Advanced cancer DISAT1Z9 moderate Biomarker [14]
Obsolete male infertility with azoospermia or oligozoospermia due to single gene mutation DIS56JR8 Moderate Autosomal recessive [15]
Long QT syndrome DISMKWS3 Disputed Autosomal dominant [16]
Colorectal carcinoma DIS5PYL0 Limited Altered Expression [17]
Long QT syndrome 11 DISL0NEK Limited Autosomal dominant [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of A-kinase anchor protein 9 (AKAP9). [19]
------------------------------------------------------------------------------------
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin affects the expression of A-kinase anchor protein 9 (AKAP9). [20]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of A-kinase anchor protein 9 (AKAP9). [21]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of A-kinase anchor protein 9 (AKAP9). [22]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of A-kinase anchor protein 9 (AKAP9). [23]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of A-kinase anchor protein 9 (AKAP9). [24]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of A-kinase anchor protein 9 (AKAP9). [11]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of A-kinase anchor protein 9 (AKAP9). [26]
Progesterone DMUY35B Approved Progesterone decreases the expression of A-kinase anchor protein 9 (AKAP9). [27]
Menadione DMSJDTY Approved Menadione affects the expression of A-kinase anchor protein 9 (AKAP9). [28]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of A-kinase anchor protein 9 (AKAP9). [29]
Clorgyline DMCEUJD Approved Clorgyline increases the expression of A-kinase anchor protein 9 (AKAP9). [30]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of A-kinase anchor protein 9 (AKAP9). [21]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of A-kinase anchor protein 9 (AKAP9). [31]
APR-246 DMNFADH Phase 2 APR-246 decreases the expression of A-kinase anchor protein 9 (AKAP9). [32]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of A-kinase anchor protein 9 (AKAP9). [33]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the expression of A-kinase anchor protein 9 (AKAP9). [31]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of A-kinase anchor protein 9 (AKAP9). [34]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of A-kinase anchor protein 9 (AKAP9). [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)

References

1 Unclassified sclerosing malignant melanomas with AKAP9-BRAF gene fusion: a report of two cases and review of BRAF fusions in melanocytic tumors.Virchows Arch. 2018 Mar;472(3):469-476. doi: 10.1007/s00428-017-2290-0. Epub 2018 Feb 21.
2 Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma.Mol Cell Endocrinol. 2010 May 28;321(1):36-43. doi: 10.1016/j.mce.2009.09.013. Epub 2009 Sep 18.
3 Tau Phosphorylation is Impacted by Rare AKAP9 Mutations Associated with Alzheimer Disease in African Americans.J Neuroimmune Pharmacol. 2018 Jun;13(2):254-264. doi: 10.1007/s11481-018-9781-x. Epub 2018 Mar 7.
4 Role of exchange protein directly activated by cAMP (EPAC1) in breast cancer cell migration and apoptosis.Mol Cell Biochem. 2017 Jun;430(1-2):115-125. doi: 10.1007/s11010-017-2959-3. Epub 2017 Feb 16.
5 Association of a common AKAP9 variant with breast cancer risk: a collaborative analysis.J Natl Cancer Inst. 2008 Mar 19;100(6):437-42. doi: 10.1093/jnci/djn037. Epub 2008 Mar 11.
6 Brugada syndrome & AKAP9: Reconciling clinical findings with diagnostic uncertainty.J Electrocardiol. 2019 Nov-Dec;57:119-121. doi: 10.1016/j.jelectrocard.2019.09.013. Epub 2019 Sep 7.
7 AKAP9 is a genetic modifier of congenital long-QT syndrome type 1.Circ Cardiovasc Genet. 2014 Oct;7(5):599-606. doi: 10.1161/CIRCGENETICS.113.000580. Epub 2014 Aug 2.
8 Targeted next-generation sequencing detects novel gene-phenotype associations and expands the mutational spectrum in cardiomyopathies.PLoS One. 2017 Jul 27;12(7):e0181842. doi: 10.1371/journal.pone.0181842. eCollection 2017.
9 Cell-free DNA mutations as biomarkers in breast cancer patients receiving tamoxifen.Oncotarget. 2016 Jul 12;7(28):43412-43418. doi: 10.18632/oncotarget.9727.
10 Resequencing and association analysis of coding regions at twenty candidate genes suggest a role for rare risk variation at AKAP9 and protective variation at NRXN1 in schizophrenia susceptibility.J Psychiatr Res. 2015 Jul-Aug;66-67:38-44. doi: 10.1016/j.jpsychires.2015.04.013. Epub 2015 Apr 22.
11 Gene expression profiles in peripheral lymphocytes by arsenic exposure and skin lesion status in a Bangladeshi population. Cancer Epidemiol Biomarkers Prev. 2006 Jul;15(7):1367-75. doi: 10.1158/1055-9965.EPI-06-0106.
12 Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer.J Clin Invest. 2005 Jan;115(1):94-101. doi: 10.1172/JCI23237.
13 Cytogenetic and molecular events in adenoma and well-differentiated thyroid follicular-cell neoplasia.Cancer Genet Cytogenet. 2010 Nov;203(1):21-9. doi: 10.1016/j.cancergencyto.2010.08.025.
14 A surprising cross-species conservation in the genomic landscape of mouse and human oral cancer identifies a transcriptional signature predicting metastatic disease.Clin Cancer Res. 2014 Jun 1;20(11):2873-84. doi: 10.1158/1078-0432.CCR-14-0205. Epub 2014 Mar 25.
15 A genomics approach to male infertility. Genet Med. 2020 Dec;22(12):1967-1975. doi: 10.1038/s41436-020-0916-0. Epub 2020 Jul 28.
16 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
17 Long non-coding RNA MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation in colorectal cancer cells.Oncotarget. 2016 Mar 8;7(10):11733-43. doi: 10.18632/oncotarget.7367.
18 Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002 Jan 18;295(5554):496-9. doi: 10.1126/science.1066843.
19 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
20 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
21 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
22 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
23 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
24 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
25 Gene expression profiles in peripheral lymphocytes by arsenic exposure and skin lesion status in a Bangladeshi population. Cancer Epidemiol Biomarkers Prev. 2006 Jul;15(7):1367-75. doi: 10.1158/1055-9965.EPI-06-0106.
26 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
27 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
28 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
29 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
30 Anti-oncogenic and pro-differentiation effects of clorgyline, a monoamine oxidase A inhibitor, on high grade prostate cancer cells. BMC Med Genomics. 2009 Aug 20;2:55. doi: 10.1186/1755-8794-2-55.
31 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
32 Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene. 2010 Mar 4;29(9):1329-38. doi: 10.1038/onc.2009.425. Epub 2009 Nov 30.
33 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
34 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
35 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.