General Information of Drug Off-Target (DOT) (ID: OT82JIGC)

DOT Name Coatomer subunit beta' (COPB2)
Synonyms Beta'-coat protein; Beta'-COP; p102
Gene Name COPB2
Related Disease
Advanced cancer ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Cholangiocarcinoma ( )
Cytomegalovirus infection ( )
Diabetic kidney disease ( )
Gastric cancer ( )
Glomerulosclerosis ( )
Isolated congenital microcephaly ( )
Lung adenocarcinoma ( )
Malignant soft tissue neoplasm ( )
Osteoporosis, childhood- or juvenile-onset, with developmental delay ( )
Prostate cancer ( )
Prostate carcinoma ( )
Sarcoma ( )
Scleroderma ( )
Scrub typhus ( )
Stomach cancer ( )
Systemic sclerosis ( )
Colorectal carcinoma ( )
Autosomal recessive primary microcephaly ( )
Microcephaly 19, primary, autosomal recessive ( )
Neoplasm ( )
UniProt ID
COPB2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8D30; 8D41
Pfam ID
PF04053 ; PF00400
Sequence
MPLRLDIKRKLTARSDRVKSVDLHPTEPWMLASLYNGSVCVWNHETQTLVKTFEVCDLPV
RAAKFVARKNWVVTGADDMQIRVFNYNTLERVHMFEAHSDYIRCIAVHPTQPFILTSSDD
MLIKLWDWDKKWSCSQVFEGHTHYVMQIVINPKDNNQFASASLDRTIKVWQLGSSSPNFT
LEGHEKGVNCIDYYSGGDKPYLISGADDRLVKIWDYQNKTCVQTLEGHAQNVSCASFHPE
LPIIITGSEDGTVRIWHSSTYRLESTLNYGMERVWCVASLRGSNNVALGYDEGSIIVKLG
REEPAMSMDANGKIIWAKHSEVQQANLKAMGDAEIKDGERLPLAVKDMGSCEIYPQTIQH
NPNGRFVVVCGDGEYIIYTAMALRNKSFGSAQEFAWAHDSSEYAIRESNSIVKIFKNFKE
KKSFKPDFGAESIYGGFLLGVRSVNGLAFYDWDNTELIRRIEIQPKHIFWSDSGELVCIA
TEESFFILKYLSEKVLAAQETHEGVTEDGIEDAFEVLGEIQEIVKTGLWVGDCFIYTSSV
NRLNYYVGGEIVTIAHLDRTMYLLGYIPKDNRLYLGDKELNIISYSLLVSVLEYQTAVMR
RDFSMADKVLPTIPKEQRTRVAHFLEKQGFKQQALTVSTDPEHRFELALQLGELKIAYQL
AVEAESEQKWKQLAELAISKCQFGLAQECLHHAQDYGGLLLLATASGNANMVNKLAEGAE
RDGKNNVAFMSYFLQGKVDACLELLIRTGRLPEAAFLARTYLPSQVSRVVKLWRENLSKV
NQKAAESLADPTEYENLFPGLKEAFVVEEWVKETHADLWPAKQYPLVTPNEERNVMEEGK
DFQPSRSTAQQELDGKPASPTPVIVASHTANKEEKSLLELEVDLDNLELEDIDTTDINLD
EDILDD
Function
The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors; This coatomer complex protein, essential for Golgi budding and vesicular trafficking, is a selective binding protein (RACK) for protein kinase C, epsilon type. It binds to Golgi membranes in a GTP-dependent manner.
Reactome Pathway
COPI-dependent Golgi-to-ER retrograde traffic (R-HSA-6811434 )
COPI-mediated anterograde transport (R-HSA-6807878 )

Molecular Interaction Atlas (MIA) of This DOT

23 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Altered Expression [1]
Arteriosclerosis DISK5QGC Strong Genetic Variation [2]
Atherosclerosis DISMN9J3 Strong Genetic Variation [2]
Cholangiocarcinoma DIS71F6X Strong Altered Expression [3]
Cytomegalovirus infection DISCEMGC Strong Biomarker [4]
Diabetic kidney disease DISJMWEY Strong Biomarker [5]
Gastric cancer DISXGOUK Strong Biomarker [1]
Glomerulosclerosis DISJF20Z Strong Biomarker [5]
Isolated congenital microcephaly DISUXHZ6 Strong Genetic Variation [6]
Lung adenocarcinoma DISD51WR Strong Altered Expression [7]
Malignant soft tissue neoplasm DISTC6NO Strong Biomarker [8]
Osteoporosis, childhood- or juvenile-onset, with developmental delay DISI6LCA Strong Autosomal dominant [9]
Prostate cancer DISF190Y Strong Biomarker [10]
Prostate carcinoma DISMJPLE Strong Biomarker [10]
Sarcoma DISZDG3U Strong Biomarker [8]
Scleroderma DISVQ342 Strong Biomarker [11]
Scrub typhus DISRXONX Strong Biomarker [12]
Stomach cancer DISKIJSX Strong Biomarker [1]
Systemic sclerosis DISF44L6 Strong Biomarker [11]
Colorectal carcinoma DIS5PYL0 moderate Altered Expression [13]
Autosomal recessive primary microcephaly DIS29IE3 Supportive Autosomal recessive [6]
Microcephaly 19, primary, autosomal recessive DIS9R2ZC Limited Unknown [14]
Neoplasm DISZKGEW Limited Altered Expression [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Coatomer subunit beta' (COPB2). [15]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Coatomer subunit beta' (COPB2). [16]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Coatomer subunit beta' (COPB2). [17]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Coatomer subunit beta' (COPB2). [18]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Coatomer subunit beta' (COPB2). [19]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Coatomer subunit beta' (COPB2). [20]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Coatomer subunit beta' (COPB2). [21]
Marinol DM70IK5 Approved Marinol decreases the expression of Coatomer subunit beta' (COPB2). [22]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the expression of Coatomer subunit beta' (COPB2). [18]
Bicalutamide DMZMSPF Approved Bicalutamide increases the expression of Coatomer subunit beta' (COPB2). [23]
Afimoxifene DMFORDT Phase 2 Afimoxifene decreases the expression of Coatomer subunit beta' (COPB2). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Coatomer subunit beta' (COPB2). [25]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Coatomer subunit beta' (COPB2). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Coatomer subunit beta' (COPB2). [24]
------------------------------------------------------------------------------------

References

1 Silencing of COPB2 inhibits the proliferation of gastric cancer cells and induces apoptosis via suppression of the RTK signaling pathway.Int J Oncol. 2019 Apr;54(4):1195-1208. doi: 10.3892/ijo.2019.4717. Epub 2019 Feb 18.
2 Atheroprotective vaccination with MHC-II-restricted ApoB peptides induces peritoneal IL-10-producing CD4 T cells.Am J Physiol Heart Circ Physiol. 2017 Apr 1;312(4):H781-H790. doi: 10.1152/ajpheart.00798.2016. Epub 2017 Jan 13.
3 Downregulation of COPB2 by RNAi inhibits growth of human cholangiocellular carcinoma cells.Eur Rev Med Pharmacol Sci. 2018 Feb;22(4):985-992. doi: 10.26355/eurrev_201802_14380.
4 Identification of Host Factors Involved in Human Cytomegalovirus Replication, Assembly, and Egress Using a Two-Step Small Interfering RNA Screen.mBio. 2018 Jun 26;9(3):e00716-18. doi: 10.1128/mBio.00716-18.
5 SND p102 promotes extracellular matrix accumulation and cell proliferation in rat glomerular mesangial cells via the AT1R/ERK/Smad3 pathway.Acta Pharmacol Sin. 2018 Sep;39(9):1513-1521. doi: 10.1038/aps.2017.184. Epub 2018 May 10.
6 Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly. Hum Mol Genet. 2017 Dec 15;26(24):4836-4848. doi: 10.1093/hmg/ddx362.
7 COPB2 promotes cell proliferation and tumorigenesis through up-regulating YAP1 expression in lung adenocarcinoma cells.Biomed Pharmacother. 2018 Jul;103:373-380. doi: 10.1016/j.biopha.2018.04.006. Epub 2018 Apr 24.
8 Engineering and characterization of a single-chain antibody fragment (scFV1924) against the human sarcoma-associated antigen p102.Anticancer Res. 2000 Jul-Aug;20(4):2753-60.
9 COPB2 loss of function causes a coatopathy with osteoporosis and developmental delay. Am J Hum Genet. 2021 Sep 2;108(9):1710-1724. doi: 10.1016/j.ajhg.2021.08.002. Epub 2021 Aug 26.
10 Coatomer subunit beta 2 (COPB2), identified by label-free quantitative proteomics, regulates cell proliferation and apoptosis in human prostate carcinoma cells.Biochem Biophys Res Commun. 2018 Jan 1;495(1):473-480. doi: 10.1016/j.bbrc.2017.11.040. Epub 2017 Nov 10.
11 Identification of the mouse beta'-COP Golgi component as a spermatocyte autoantigen in scleroderma and mapping of its gene Copb2 to mouse chromosome 9.Cytogenet Cell Genet. 1999;87(3-4):201-4. doi: 10.1159/000015467.
12 Orientia tsutsugamushi Ank9 is a multifunctional effector that utilizes a novel GRIP-like Golgi localization domain for Golgi-to-endoplasmic reticulum trafficking and interacts with host COPB2.Cell Microbiol. 2017 Jul;19(7):10.1111/cmi.12727. doi: 10.1111/cmi.12727. Epub 2017 Feb 3.
13 MicroRNA-4461 derived from bone marrow mesenchymal stem cell exosomes inhibits tumorigenesis by downregulating COPB2 expression in colorectal cancer.Biosci Biotechnol Biochem. 2020 Feb;84(2):338-346. doi: 10.1080/09168451.2019.1677452. Epub 2019 Oct 21.
14 Closing in on the BPES gene on 3q23: mapping of a de Novo reciprocal translocation t(3;4)(q23;p15.2) breakpoint within a 45-kb cosmid and mapping of three candidate genes, RBP1, RBP2, and beta'-COP, distal to the breakpoint. Genomics. 1999 Apr 1;57(1):70-8. doi: 10.1006/geno.1999.5747.
15 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
16 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
17 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
18 Comparative gene expression profiling reveals partially overlapping but distinct genomic actions of different antiestrogens in human breast cancer cells. J Cell Biochem. 2006 Aug 1;98(5):1163-84.
19 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
20 Proteomics-based identification of differentially abundant proteins from human keratinocytes exposed to arsenic trioxide. J Proteomics Bioinform. 2014 Jul;7(7):166-178.
21 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
22 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
23 Differentially expressed genes in the prostate cancer cell line LNCaP after exposure to androgen and anti-androgen. Cancer Genet Cytogenet. 2006 Apr 15;166(2):130-8. doi: 10.1016/j.cancergencyto.2005.09.012.
24 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
25 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
26 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.