General Information of Drug Off-Target (DOT) (ID: OT9YXZSO)

DOT Name H(+)/Cl(-) exchange transporter 5 (CLCN5)
Synonyms Chloride channel protein 5; ClC-5; Chloride transporter ClC-5
Gene Name CLCN5
Related Disease
Classic lissencephaly ( )
Dent disease type 1 ( )
Intellectual disability ( )
Bartter syndrome ( )
Chronic renal failure ( )
Dent disease type 2 ( )
End-stage renal disease ( )
Glomerulosclerosis ( )
Hepatitis C virus infection ( )
Hypophosphatemic rickets ( )
Inflammatory bowel disease ( )
Interstitial nephritis ( )
Irritable bowel syndrome ( )
Kidney failure ( )
Nephrocalcinosis ( )
Nephropathy ( )
Oculocerebrorenal syndrome ( )
Osteoporosis ( )
Renal fibrosis ( )
Rickets ( )
Vitamin D-dependent rickets, type 2 ( )
Goiter ( )
Plasma cell myeloma ( )
Renal tubular transport disease ( )
Small lymphocytic lymphoma ( )
Chronic kidney disease ( )
Familial primary hypomagnesemia ( )
Glioma ( )
Malignant glioma ( )
Membranous glomerulonephritis ( )
Mixed glioma ( )
Non-insulin dependent diabetes ( )
Renal tubule disorder ( )
UniProt ID
CLCN5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2J9L; 2JA3
Pfam ID
PF00571 ; PF00654
Sequence
MAMWQGAMDNRGFQQGSFSSFQNSSSDEDLMDIPATAMDFSMRDDVPPLDREVGEDKSYN
GGGIGSSNRIMDFLEEPIPGVGTYDDFNTIDWVREKSRDRDRHREITNKSKESTWALIHS
VSDAFSGWLLMLLIGLLSGSLAGLIDISAHWMTDLKEGICTGGFWFNHEHCCWNSEHVTF
EERDKCPEWNSWSQLIISTDEGAFAYIVNYFMYVLWALLFAFLAVSLVKVFAPYACGSGI
PEIKTILSGFIIRGYLGKWTLVIKTITLVLAVSSGLSLGKEGPLVHVACCCGNILCHCFN
KYRKNEAKRREVLSAAAAAGVSVAFGAPIGGVLFSLEEVSYYFPLKTLWRSFFAALVAAF
TLRSINPFGNSRLVLFYVEFHTPWHLFELVPFILLGIFGGLWGALFIRTNIAWCRKRKTT
QLGKYPVIEVLVVTAITAILAFPNEYTRMSTSELISELFNDCGLLDSSKLCDYENRFNTS
KGGELPDRPAGVGVYSAMWQLALTLILKIVITIFTFGMKIPSGLFIPSMAVGAIAGRLLG
VGMEQLAYYHQEWTVFNSWCSQGADCITPGLYAMVGAAACLGGVTRMTVSLVVIMFELTG
GLEYIVPLMAAAMTSKWVADALGREGIYDAHIRLNGYPFLEAKEEFAHKTLAMDVMKPRR
NDPLLTVLTQDSMTVEDVETIISETTYSGFPVVVSRESQRLVGFVLRRDLIISIENARKK
QDGVVSTSIIYFTEHSPPLPPYTPPTLKLRNILDLSPFTVTDLTPMEIVVDIFRKLGLRQ
CLVTHNGRLLGIITKKDVLKHIAQMANQDPDSILFN
Function
Proton-coupled chloride transporter. Functions as antiport system and exchanges chloride ions against protons. Important for normal acidification of the endosome lumen. May play an important role in renal tubular function. The CLC channel family contains both chloride channels and proton-coupled anion transporters that exchange chloride or another anion for protons. The absence of conserved gating glutamate residues is typical for family members that function as channels (Probable).
Tissue Specificity Kidney. Moderately expressed in aortic vascular smooth muscle and endothelial cells, and at a slightly higher level in the coronary vascular smooth muscle.
KEGG Pathway
Neutrophil extracellular trap formation (hsa04613 )
Reactome Pathway
Stimuli-sensing channels (R-HSA-2672351 )

Molecular Interaction Atlas (MIA) of This DOT

33 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Classic lissencephaly DISR8S3S Definitive Biomarker [1]
Dent disease type 1 DISNGJIQ Definitive X-linked [2]
Intellectual disability DISMBNXP Definitive Biomarker [3]
Bartter syndrome DIS7D44B Strong Genetic Variation [4]
Chronic renal failure DISGG7K6 Strong Genetic Variation [5]
Dent disease type 2 DISJFNHL Strong Biomarker [6]
End-stage renal disease DISXA7GG Strong Genetic Variation [5]
Glomerulosclerosis DISJF20Z Strong Genetic Variation [7]
Hepatitis C virus infection DISQ0M8R Strong Biomarker [8]
Hypophosphatemic rickets DIS7XTW5 Strong Biomarker [9]
Inflammatory bowel disease DISGN23E Strong Altered Expression [10]
Interstitial nephritis DISKQGND Strong Genetic Variation [11]
Irritable bowel syndrome DIS27206 Strong Altered Expression [10]
Kidney failure DISOVQ9P Strong Genetic Variation [12]
Nephrocalcinosis DIS5ZVJP Strong Genetic Variation [13]
Nephropathy DISXWP4P Strong Altered Expression [14]
Oculocerebrorenal syndrome DIS8TEDY Strong Biomarker [15]
Osteoporosis DISF2JE0 Strong Biomarker [16]
Renal fibrosis DISMHI3I Strong Biomarker [17]
Rickets DISH89YF Strong Biomarker [18]
Vitamin D-dependent rickets, type 2 DISZHFC3 Strong Biomarker [9]
Goiter DISLCGI6 moderate Biomarker [19]
Plasma cell myeloma DIS0DFZ0 moderate Biomarker [20]
Renal tubular transport disease DISBGF8S moderate Biomarker [21]
Small lymphocytic lymphoma DIS30POX moderate Genetic Variation [22]
Chronic kidney disease DISW82R7 Limited Biomarker [17]
Familial primary hypomagnesemia DIS6TTKI Limited Genetic Variation [23]
Glioma DIS5RPEH Limited Biomarker [24]
Malignant glioma DISFXKOV Limited Biomarker [24]
Membranous glomerulonephritis DISFSUKQ Limited Biomarker [14]
Mixed glioma DIS64UY3 Limited Biomarker [24]
Non-insulin dependent diabetes DISK1O5Z Limited Biomarker [14]
Renal tubule disorder DISAFXMQ Limited Genetic Variation [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of H(+)/Cl(-) exchange transporter 5 (CLCN5). [26]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of H(+)/Cl(-) exchange transporter 5 (CLCN5). [36]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [27]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [28]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [29]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [30]
Quercetin DM3NC4M Approved Quercetin decreases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [31]
Testosterone DM7HUNW Approved Testosterone decreases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [32]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [33]
Folic acid DMEMBJC Approved Folic acid decreases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [34]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [35]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [37]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [38]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [39]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [40]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of H(+)/Cl(-) exchange transporter 5 (CLCN5). [41]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Gene Profiling of Nucleus Basalis Tau Containing Neurons in Chronic Traumatic Encephalopathy: A Chronic Effects of Neurotrauma Consortium Study.J Neurotrauma. 2018 Jun 1;35(11):1260-1271. doi: 10.1089/neu.2017.5368. Epub 2018 Apr 5.
2 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
3 Familial Xp11.22 microdeletion including SHROOM4 and CLCN5 is associated with intellectual disability, short stature, microcephaly and Dent disease: a case report.BMC Med Genomics. 2019 Jan 10;12(1):6. doi: 10.1186/s12920-018-0471-6.
4 Barttin Regulates the Subcellular Localization and Posttranslational Modification of Human Cl(-)/H(+) Antiporter ClC-5.Front Physiol. 2018 Oct 23;9:1490. doi: 10.3389/fphys.2018.01490. eCollection 2018.
5 Dent's disease and prevalence of renal stones in dialysis patients in Northeastern Italy.J Hum Genet. 2006;51(1):25-30. doi: 10.1007/s10038-005-0317-x. Epub 2005 Oct 25.
6 Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules.Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8472-7. doi: 10.1073/pnas.1432873100. Epub 2003 Jun 18.
7 A novel CLCN5 mutation in a boy with asymptomatic proteinuria and focal global glomerulosclerosis.Clin Nephrol. 2013 Nov;80(5):377-84. doi: 10.5414/CN107429.
8 RNA triphosphatase DUSP11 enables exonuclease XRN-mediated restriction of hepatitis C virus.Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8197-8202. doi: 10.1073/pnas.1802326115. Epub 2018 Jul 23.
9 Mutational analysis of PHEX, FGF23 and CLCN5 in patients with hypophosphataemic rickets.Clin Endocrinol (Oxf). 2017 Jul;87(1):103-112. doi: 10.1111/cen.13347. Epub 2017 May 11.
10 Downregulation of sodium transporters and NHERF proteins in IBD patients and mouse colitis models: potential contributors to IBD-associated diarrhea.Inflamm Bowel Dis. 2009 Feb;15(2):261-74. doi: 10.1002/ibd.20743.
11 Prevalence of low molecular weight proteinuria and Dent disease 1 CLCN5 mutations in proteinuric cohorts.Pediatr Nephrol. 2020 Apr;35(4):633-640. doi: 10.1007/s00467-019-04210-0. Epub 2019 Mar 10.
12 Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients.Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):7014-9. doi: 10.1073/pnas.1302063110. Epub 2013 Apr 9.
13 Phenotype and genotype of Dent's disease in three Korean boys.Pediatr Nephrol. 2005 Apr;20(4):455-9. doi: 10.1007/s00467-004-1769-5. Epub 2005 Feb 18.
14 Involvement of the tubular ClC-type exchanger ClC-5 in glomeruli of human proteinuric nephropathies.PLoS One. 2012;7(9):e45605. doi: 10.1371/journal.pone.0045605. Epub 2012 Sep 24.
15 Proteinuria in Dent disease: a review of the literature.Pediatr Nephrol. 2017 Oct;32(10):1851-1859. doi: 10.1007/s00467-016-3499-x. Epub 2016 Oct 18.
16 Straightening out the renal tubule: advances in the molecular basis of the inherited tubulopathies.QJM. 1998 Jan;91(1):5-12. doi: 10.1093/qjmed/91.1.5.
17 ClC-5 alleviates renal fibrosis in unilateral ureteral obstruction mice.Hum Cell. 2019 Jul;32(3):297-305. doi: 10.1007/s13577-019-00253-5. Epub 2019 May 3.
18 Dent Disease in Chinese Children and Findings from Heterozygous Mothers: Phenotypic Heterogeneity, Fetal Growth, and 10 Novel Mutations.J Pediatr. 2016 Jul;174:204-210.e1. doi: 10.1016/j.jpeds.2016.04.007. Epub 2016 May 9.
19 The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland.Endocrinology. 2006 Mar;147(3):1287-96. doi: 10.1210/en.2005-1149. Epub 2005 Nov 23.
20 ClC5 Decreases the Sensitivity of Multiple Myeloma Cells to Bortezomib via Promoting Prosurvival Autophagy.Oncol Res. 2018 Apr 10;26(3):421-429. doi: 10.3727/096504017X15049221237147. Epub 2017 Sep 11.
21 Detection of ClC-3 and ClC-5 in epididymal epithelium: immunofluorescence and RT-PCR after LCM.Am J Physiol Cell Physiol. 2003 Jan;284(1):C220-32. doi: 10.1152/ajpcell.00374.2001.
22 IL-4 Up-Regulates MiR-21 and the MiRNAs Hosted in the CLCN5 Gene in Chronic Lymphocytic Leukemia.PLoS One. 2015 Apr 24;10(4):e0124936. doi: 10.1371/journal.pone.0124936. eCollection 2015.
23 Genetics of hypercalciuric nephrolithiasis: renal stone disease.Ann N Y Acad Sci. 2007 Nov;1116:461-84. doi: 10.1196/annals.1402.030. Epub 2007 Sep 13.
24 Expression of voltage-gated chloride channels in human glioma cells.J Neurosci. 2003 Jul 2;23(13):5572-82. doi: 10.1523/JNEUROSCI.23-13-05572.2003.
25 Idiopathic low molecular weight proteinuria associated with hypercalciuric nephrocalcinosis in Japanese children is due to mutations of the renal chloride channel (CLCN5).J Clin Invest. 1997 Mar 1;99(5):967-74. doi: 10.1172/JCI119262.
26 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
27 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
28 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
29 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
30 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
31 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
32 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
33 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
34 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
35 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
36 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
37 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
38 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
39 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
40 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
41 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.