General Information of Drug Off-Target (DOT) (ID: OTBIDOOR)

DOT Name Tyrosine-protein kinase JAK2 (JAK2)
Synonyms EC 2.7.10.2; Janus kinase 2; JAK-2
Gene Name JAK2
Related Disease
Thrombocythemia 3 ( )
Thrombocythemia ( )
UniProt ID
JAK2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2B7A ; 2W1I ; 2XA4 ; 3E62 ; 3E63 ; 3E64 ; 3FUP ; 3IO7 ; 3IOK ; 3JY9 ; 3KCK ; 3KRR ; 3LPB ; 3Q32 ; 3RVG ; 3TJC ; 3TJD ; 3UGC ; 3ZMM ; 4AQC ; 4BBE ; 4BBF ; 4C61 ; 4C62 ; 4D0W ; 4D0X ; 4D1S ; 4E4M ; 4E6D ; 4E6Q ; 4F08 ; 4F09 ; 4FVP ; 4FVQ ; 4FVR ; 4GFM ; 4GMY ; 4HGE ; 4IVA ; 4JI9 ; 4JIA ; 4P7E ; 4YTC ; 4YTF ; 4YTH ; 4YTI ; 4Z32 ; 4ZIM ; 5AEP ; 5CF4 ; 5CF5 ; 5CF6 ; 5CF8 ; 5HEZ ; 5I4N ; 5L3A ; 5TQ3 ; 5TQ4 ; 5TQ5 ; 5TQ6 ; 5TQ7 ; 5TQ8 ; 5USY ; 5USZ ; 5UT0 ; 5UT1 ; 5UT2 ; 5UT3 ; 5UT4 ; 5UT5 ; 5UT6 ; 5WEV ; 5WIJ ; 5WIK ; 5WIL ; 5WIM ; 5WIN ; 6AAJ ; 6BBV ; 6BRW ; 6BS0 ; 6BSS ; 6D2I ; 6DRW ; 6E2P ; 6E2Q ; 6G3C ; 6M9H ; 6OAV ; 6OBB ; 6OBF ; 6OBL ; 6OCC ; 6TPD ; 6VGL ; 6VN8 ; 6VNB ; 6VNC ; 6VNE ; 6VNF ; 6VNG ; 6VNH ; 6VNI ; 6VNJ ; 6VNK ; 6VNL ; 6VNM ; 6VS3 ; 6VSN ; 6WTN ; 6WTO ; 6WTP ; 6WTQ ; 6X8E ; 6XJK ; 7F7W ; 7JYO ; 7JYQ ; 7LL4 ; 7LL5 ; 7Q7I ; 7Q7K ; 7Q7L ; 7Q7W ; 7REE ; 7RN6 ; 7T0P ; 7T1T ; 7TEU ; 7UYW ; 8B8N ; 8B8U ; 8B99 ; 8B9E ; 8B9H ; 8BA2 ; 8BA3 ; 8BA4 ; 8BAB ; 8BAK ; 8BM2 ; 8BPV ; 8BPW ; 8CZ9 ; 8EX0 ; 8EX1 ; 8EX2 ; 8EXK ; 8EYA ; 8EYB ; 8F88 ; 8G6Z ; 8G8O ; 8G8X
EC Number
2.7.10.2
Pfam ID
PF18379 ; PF18377 ; PF17887 ; PF07714 ; PF00017
Sequence
MGMACLTMTEMEGTSTSSIYQNGDISGNANSMKQIDPVLQVYLYHSLGKSEADYLTFPSG
EYVAEEICIAASKACGITPVYHNMFALMSETERIWYPPNHVFHIDESTRHNVLYRIRFYF
PRWYCSGSNRAYRHGISRGAEAPLLDDFVMSYLFAQWRHDFVHGWIKVPVTHETQEECLG
MAVLDMMRIAKENDQTPLAIYNSISYKTFLPKCIRAKIQDYHILTRKRIRYRFRRFIQQF
SQCKATARNLKLKYLINLETLQSAFYTEKFEVKEPGSGPSGEEIFATIIITGNGGIQWSR
GKHKESETLTEQDLQLYCDFPNIIDVSIKQANQEGSNESRVVTIHKQDGKNLEIELSSLR
EALSFVSLIDGYYRLTADAHHYLCKEVAPPAVLENIQSNCHGPISMDFAISKLKKAGNQT
GLYVLRCSPKDFNKYFLTFAVERENVIEYKHCLITKNENEEYNLSGTKKNFSSLKDLLNC
YQMETVRSDNIIFQFTKCCPPKPKDKSNLLVFRTNGVSDVPTSPTLQRPTHMNQMVFHKI
RNEDLIFNESLGQGTFTKIFKGVRREVGDYGQLHETEVLLKVLDKAHRNYSESFFEAASM
MSKLSHKHLVLNYGVCVCGDENILVQEFVKFGSLDTYLKKNKNCINILWKLEVAKQLAWA
MHFLEENTLIHGNVCAKNILLIREEDRKTGNPPFIKLSDPGISITVLPKDILQERIPWVP
PECIENPKNLNLATDKWSFGTTLWEICSGGDKPLSALDSQRKLQFYEDRHQLPAPKWAEL
ANLINNCMDYEPDFRPSFRAIIRDLNSLFTPDYELLTENDMLPNMRIGALGFSGAFEDRD
PTQFEERHLKFLQQLGKGNFGSVEMCRYDPLQDNTGEVVAVKKLQHSTEEHLRDFEREIE
ILKSLQHDNIVKYKGVCYSAGRRNLKLIMEYLPYGSLRDYLQKHKERIDHIKLLQYTSQI
CKGMEYLGTKRYIHRDLATRNILVENENRVKIGDFGLTKVLPQDKEYYKVKEPGESPIFW
YAPESLTESKFSVASDVWSFGVVLYELFTYIEKSKSPPAEFMRMIGNDKQGQMIVFHLIE
LLKNNGRLPRPDGCPDEIYMIMTECWNNNVNQRPSFRDLALRVDQIRDNMAG
Function
Non-receptor tyrosine kinase involved in various processes such as cell growth, development, differentiation or histone modifications. Mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors such as growth hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin (THPO); or type II receptors including IFN-alpha, IFN-beta, IFN-gamma and multiple interleukins. Following ligand-binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins. Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, cell stimulation with erythropoietin (EPO) during erythropoiesis leads to JAK2 autophosphorylation, activation, and its association with erythropoietin receptor (EPOR) that becomes phosphorylated in its cytoplasmic domain. Then, STAT5 (STAT5A or STAT5B) is recruited, phosphorylated and activated by JAK2. Once activated, dimerized STAT5 translocates into the nucleus and promotes the transcription of several essential genes involved in the modulation of erythropoiesis. Part of a signaling cascade that is activated by increased cellular retinol and that leads to the activation of STAT5 (STAT5A or STAT5B). In addition, JAK2 mediates angiotensin-2-induced ARHGEF1 phosphorylation. Plays a role in cell cycle by phosphorylating CDKN1B. Cooperates with TEC through reciprocal phosphorylation to mediate cytokine-driven activation of FOS transcription. In the nucleus, plays a key role in chromatin by specifically mediating phosphorylation of 'Tyr-41' of histone H3 (H3Y41ph), a specific tag that promotes exclusion of CBX5 (HP1 alpha) from chromatin.
Tissue Specificity Ubiquitously expressed throughout most tissues.
KEGG Pathway
EGFR tyrosine ki.se inhibitor resistance (hsa01521 )
Chemokine sig.ling pathway (hsa04062 )
Efferocytosis (hsa04148 )
PI3K-Akt sig.ling pathway (hsa04151 )
Necroptosis (hsa04217 )
Sig.ling pathways regulating pluripotency of stem cells (hsa04550 )
JAK-STAT sig.ling pathway (hsa04630 )
Th1 and Th2 cell differentiation (hsa04658 )
Th17 cell differentiation (hsa04659 )
Cholinergic sy.pse (hsa04725 )
Prolactin sig.ling pathway (hsa04917 )
Adipocytokine sig.ling pathway (hsa04920 )
AGE-RAGE sig.ling pathway in diabetic complications (hsa04933 )
Growth hormone synthesis, secretion and action (hsa04935 )
Leishmaniasis (hsa05140 )
Toxoplasmosis (hsa05145 )
Tuberculosis (hsa05152 )
Hepatitis B (hsa05161 )
Influenza A (hsa05164 )
Kaposi sarcoma-associated herpesvirus infection (hsa05167 )
Herpes simplex virus 1 infection (hsa05168 )
Pathways in cancer (hsa05200 )
Chemical carcinogenesis - receptor activation (hsa05207 )
PD-L1 expression and PD-1 checkpoint pathway in cancer (hsa05235 )
Lipid and atherosclerosis (hsa05417 )
Reactome Pathway
MAPK3 (ERK1) activation (R-HSA-110056 )
MAPK1 (ERK2) activation (R-HSA-112411 )
Prolactin receptor signaling (R-HSA-1170546 )
Signaling by SCF-KIT (R-HSA-1433557 )
Signaling by Leptin (R-HSA-2586552 )
RMTs methylate histone arginines (R-HSA-3214858 )
Interleukin-3, Interleukin-5 and GM-CSF signaling (R-HSA-512988 )
RAF activation (R-HSA-5673000 )
RAF/MAP kinase cascade (R-HSA-5673001 )
Interleukin-4 and Interleukin-13 signaling (R-HSA-6785807 )
IL-6-type cytokine receptor ligand interactions (R-HSA-6788467 )
Signaling by moderate kinase activity BRAF mutants (R-HSA-6802946 )
Signaling by BRAF and RAF1 fusions (R-HSA-6802952 )
Paradoxical activation of RAF signaling by kinase inactive BRAF (R-HSA-6802955 )
Cyclin D associated events in G1 (R-HSA-69231 )
Interferon gamma signaling (R-HSA-877300 )
Regulation of IFNG signaling (R-HSA-877312 )
Interleukin-20 family signaling (R-HSA-8854691 )
Interleukin-35 Signalling (R-HSA-8984722 )
Signaling by Erythropoietin (R-HSA-9006335 )
Interleukin-12 signaling (R-HSA-9020591 )
Interleukin-23 signaling (R-HSA-9020933 )
Interleukin-27 signaling (R-HSA-9020956 )
Erythropoietin activates Phosphoinositide-3-kinase (PI3K) (R-HSA-9027276 )
Erythropoietin activates Phospholipase C gamma (PLCG) (R-HSA-9027277 )
Erythropoietin activates STAT5 (R-HSA-9027283 )
Erythropoietin activates RAS (R-HSA-9027284 )
Interleukin receptor SHC signaling (R-HSA-912526 )
Signaling downstream of RAS mutants (R-HSA-9649948 )
Signaling by RAF1 mutants (R-HSA-9656223 )
Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT mutants (R-HSA-9670439 )
Signaling by CSF3 (G-CSF) (R-HSA-9674555 )
Potential therapeutics for SARS (R-HSA-9679191 )
Inactivation of CSF3 (G-CSF) signaling (R-HSA-9705462 )
IFNG signaling activates MAPKs (R-HSA-9732724 )
Growth hormone receptor signaling (R-HSA-982772 )
Factors involved in megakaryocyte development and platelet production (R-HSA-983231 )
Interleukin-6 signaling (R-HSA-1059683 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Thrombocythemia 3 DISNM1LK Strong Autosomal dominant [1]
Thrombocythemia DISL38J3 Supportive Autosomal dominant [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Nicotine DMWX5CO Approved Tyrosine-protein kinase JAK2 (JAK2) increases the response to substance of Nicotine. [44]
Leptin DM5LY1H Investigative Tyrosine-protein kinase JAK2 (JAK2) increases the Ovarian cancer ADR of Leptin. [45]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Tyrosine-protein kinase JAK2 (JAK2). [3]
Arsenic DMTL2Y1 Approved Arsenic increases the phosphorylation of Tyrosine-protein kinase JAK2 (JAK2). [10]
Decitabine DMQL8XJ Approved Decitabine decreases the methylation of Tyrosine-protein kinase JAK2 (JAK2). [14]
Momelotinib DMF98Q0 Approved Momelotinib decreases the phosphorylation of Tyrosine-protein kinase JAK2 (JAK2). [22]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the phosphorylation of Tyrosine-protein kinase JAK2 (JAK2). [24]
Thymoquinone DMVDTR2 Phase 2/3 Thymoquinone decreases the phosphorylation of Tyrosine-protein kinase JAK2 (JAK2). [29]
Delphinidin DMS2WIN Phase 2 Delphinidin decreases the phosphorylation of Tyrosine-protein kinase JAK2 (JAK2). [31]
WP-1066 DMUGHWR Phase 1/2 WP-1066 decreases the phosphorylation of Tyrosine-protein kinase JAK2 (JAK2). [32]
Sphingosine-1-Phosphate DMJCQKA Phase 1 Sphingosine-1-Phosphate increases the phosphorylation of Tyrosine-protein kinase JAK2 (JAK2). [35]
EMODIN DMAEDQG Terminated EMODIN decreases the phosphorylation of Tyrosine-protein kinase JAK2 (JAK2). [38]
AG490 DM3WKO5 Terminated AG490 decreases the phosphorylation of Tyrosine-protein kinase JAK2 (JAK2). [39]
(E)-4-(3,5-dimethoxystyryl)phenol DMYXI2V Investigative (E)-4-(3,5-dimethoxystyryl)phenol decreases the phosphorylation of Tyrosine-protein kinase JAK2 (JAK2). [43]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
36 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [9]
Quercetin DM3NC4M Approved Quercetin increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [11]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [12]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [13]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [15]
Progesterone DMUY35B Approved Progesterone increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [16]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [17]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [17]
Melphalan DMOLNHF Approved Melphalan decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [18]
Mitoxantrone DMM39BF Approved Mitoxantrone decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [6]
Daunorubicin DMQUSBT Approved Daunorubicin decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [6]
Estrone DM5T6US Approved Estrone increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [17]
Mestranol DMG3F94 Approved Mestranol increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [17]
Tofacitinib DMBS370 Approved Tofacitinib decreases the activity of Tyrosine-protein kinase JAK2 (JAK2). [19]
Amlodipine DMBDAZV Approved Amlodipine increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [20]
Paroxetine DM5PVQE Approved Paroxetine increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [21]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [23]
Curcumin DMQPH29 Phase 3 Curcumin decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [25]
Napabucasin DMDZ6Q3 Phase 3 Napabucasin decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [26]
Jakafi DMNORK8 Phase 3 Jakafi decreases the activity of Tyrosine-protein kinase JAK2 (JAK2). [27]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [28]
Contigoside B DMX9V8K Phase 2/3 Contigoside B increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [30]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [33]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [34]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [36]
PMID25656651-Compound-5 DMAI95U Patented PMID25656651-Compound-5 decreases the activity of Tyrosine-protein kinase JAK2 (JAK2). [37]
HEXESTROL DM9AGWQ Withdrawn from market HEXESTROL increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [40]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [41]
2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE DMNQL17 Investigative 2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE increases the expression of Tyrosine-protein kinase JAK2 (JAK2). [42]
Butanoic acid DMTAJP7 Investigative Butanoic acid decreases the expression of Tyrosine-protein kinase JAK2 (JAK2). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 36 Drug(s)

References

1 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
2 Germline JAK2 mutation in a family with hereditary thrombocytosis. N Engl J Med. 2012 Mar 8;366(10):967-9. doi: 10.1056/NEJMc1200349.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
6 Identification of genomic biomarkers for anthracycline-induced cardiotoxicity in human iPSC-derived cardiomyocytes: an in vitro repeated exposure toxicity approach for safety assessment. Arch Toxicol. 2016 Nov;90(11):2763-2777.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
9 Ivermectin accelerates autophagic death of glioma cells by inhibiting glycolysis through blocking GLUT4 mediated JAK/STAT signaling pathway activation. Environ Toxicol. 2022 Apr;37(4):754-764. doi: 10.1002/tox.23440. Epub 2021 Dec 14.
10 Arsenic activates STAT3 signaling during the transformation of the human bronchial epithelial cells. Toxicol Appl Pharmacol. 2022 Feb 1;436:115884. doi: 10.1016/j.taap.2022.115884. Epub 2022 Jan 11.
11 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
12 A comprehensive analysis of Wnt/beta-catenin signaling pathway-related genes and crosstalk pathways in the treatment of As2O3 in renal cancer. Ren Fail. 2018 Nov;40(1):331-339.
13 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
14 Induction of hypomethylation and molecular response after decitabine therapy in patients with chronic myelomonocytic leukemia. Blood. 2008 Feb 15;111(4):2382-4. doi: 10.1182/blood-2007-07-103960. Epub 2007 Nov 30.
15 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
16 Unique transcriptome, pathways, and networks in the human endometrial fibroblast response to progesterone in endometriosis. Biol Reprod. 2011 Apr;84(4):801-15.
17 Moving toward integrating gene expression profiling into high-throughput testing: a gene expression biomarker accurately predicts estrogen receptor alpha modulation in a microarray compendium. Toxicol Sci. 2016 May;151(1):88-103.
18 Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One. 2012;7(2):e30758. doi: 10.1371/journal.pone.0030758. Epub 2012 Feb 17.
19 Differences in gene expression and alterations in cell cycle of acute myeloid leukemia cell lines after treatment with JAK inhibitors. Eur J Pharmacol. 2015 Oct 15;765:188-97. doi: 10.1016/j.ejphar.2015.08.037. Epub 2015 Aug 20.
20 Amlodipine inhibits cell proliferation via PKD1-related pathway. Biochem Biophys Res Commun. 2008 May 2;369(2):376-81. doi: 10.1016/j.bbrc.2008.02.075. Epub 2008 Feb 25.
21 Paroxetine modulates immune responses by activating a JAK2/STAT3 signaling pathway. J Biochem Mol Toxicol. 2020 May;34(5):e22464. doi: 10.1002/jbt.22464. Epub 2020 Feb 5.
22 The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed Pharmacother. 2016 Aug;82:595-605. doi: 10.1016/j.biopha.2016.05.029. Epub 2016 Jun 9.
23 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
24 Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition. PLoS One. 2013;8(1):e55183. doi: 10.1371/journal.pone.0055183. Epub 2013 Jan 25.
25 Curcumin regulates signal transducer and activator of transcription (STAT) expression in K562 cells. Biochem Pharmacol. 2006 Nov 30;72(11):1547-54. doi: 10.1016/j.bcp.2006.07.029. Epub 2006 Sep 7.
26 Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1839-44. doi: 10.1073/pnas.1424171112. Epub 2015 Jan 20.
27 JAK inhibitors: treatment efficacy and safety profile in patients with psoriasis. J Immunol Res. 2014;2014:283617. doi: 10.1155/2014/283617. Epub 2014 May 5.
28 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
29 Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells. Food Chem Toxicol. 2021 Nov;157:112604. doi: 10.1016/j.fct.2021.112604. Epub 2021 Oct 7.
30 Improved Preventive Effects of Combined Bioactive Compounds Present in Different Blueberry Varieties as Compared to Single Phytochemicals. Nutrients. 2018 Dec 29;11(1):61. doi: 10.3390/nu11010061.
31 Delphinidin modulates JAK/STAT3 and MAPKinase signaling to induce apoptosis in HCT116 cells. Environ Toxicol. 2021 Aug;36(8):1557-1566. doi: 10.1002/tox.23152. Epub 2021 May 6.
32 WP1066 disrupts Janus kinase-2 and induces caspase-dependent apoptosis in acute myelogenous leukemia cells. Cancer Res. 2007 Dec 1;67(23):11291-9. doi: 10.1158/0008-5472.CAN-07-0593.
33 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
34 Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression. Cell Rep. 2015 Sep 29;12(12):1986-96. doi: 10.1016/j.celrep.2015.08.046. Epub 2015 Sep 17.
35 S1P facilitates IL-1 production in osteoblasts via the JAK and STAT3 signaling pathways. Environ Toxicol. 2020 Sep;35(9):991-997. doi: 10.1002/tox.22935. Epub 2020 May 13.
36 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
37 AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009 Nov 6;16(5):401-12. doi: 10.1016/j.ccr.2009.09.028.
38 Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3. Br J Pharmacol. 2013 Oct;170(4):807-21. doi: 10.1111/bph.12302.
39 Naphtho[1,2-b]furan-4,5-dione disrupts Janus kinase-2 and induces apoptosis in breast cancer MDA-MB-231 cells. Toxicol In Vitro. 2010 Jun;24(4):1158-67. doi: 10.1016/j.tiv.2010.02.019. Epub 2010 Mar 1.
40 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.
41 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
42 Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer. Arch Toxicol. 2018 Apr;92(4):1639-1655.
43 Pterostilbene exerts antitumor activity against human osteosarcoma cells by inhibiting the JAK2/STAT3 signaling pathway. Toxicology. 2013 Feb 8;304:120-31. doi: 10.1016/j.tox.2012.12.018. Epub 2013 Jan 8.
44 42 nicotinic receptors partially mediate anti-inflammatory effects through Janus kinase 2-signal transducer and activator of transcription 3 but not calcium or cAMP signaling. Mol Pharmacol. 2011 Jan;79(1):167-74. doi: 10.1124/mol.110.066381. Epub 2010 Oct 13.
45 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.