General Information of Drug Off-Target (DOT) (ID: OTEJCYMY)

DOT Name C-X-C motif chemokine 2 (CXCL2)
Synonyms Growth-regulated protein beta; Gro-beta; Macrophage inflammatory protein 2-alpha; MIP2-alpha
Gene Name CXCL2
UniProt ID
CXCL2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1QNK; 5OB5
Pfam ID
PF00048
Sequence
MARATLSAAPSNPRLLRVALLLLLLVAASRRAAGAPLATELRCQCLQTLQGIHLKNIQSV
KVKSPGPHCAQTEVIATLKNGQKACLNPASPMVKKIIEKMLKNGKSN
Function
Produced by activated monocytes and neutrophils and expressed at sites of inflammation. Hematoregulatory chemokine, which, in vitro, suppresses hematopoietic progenitor cell proliferation. GRO-beta(5-73) shows a highly enhanced hematopoietic activity.
KEGG Pathway
Cytokine-cytokine receptor interaction (hsa04060 )
Viral protein interaction with cytokine and cytokine receptor (hsa04061 )
Chemokine sig.ling pathway (hsa04062 )
NF-kappa B sig.ling pathway (hsa04064 )
NOD-like receptor sig.ling pathway (hsa04621 )
IL-17 sig.ling pathway (hsa04657 )
TNF sig.ling pathway (hsa04668 )
Alcoholic liver disease (hsa04936 )
Epithelial cell sig.ling in Helicobacter pylori infection (hsa05120 )
Legionellosis (hsa05134 )
Amoebiasis (hsa05146 )
Kaposi sarcoma-associated herpesvirus infection (hsa05167 )
Rheumatoid arthritis (hsa05323 )
Lipid and atherosclerosis (hsa05417 )
Reactome Pathway
G alpha (i) signalling events (R-HSA-418594 )
Interleukin-10 signaling (R-HSA-6783783 )
Chemokine receptors bind chemokines (R-HSA-380108 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
DTI-015 DMXZRW0 Approved C-X-C motif chemokine 2 (CXCL2) affects the response to substance of DTI-015. [43]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of C-X-C motif chemokine 2 (CXCL2). [1]
------------------------------------------------------------------------------------
47 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of C-X-C motif chemokine 2 (CXCL2). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of C-X-C motif chemokine 2 (CXCL2). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of C-X-C motif chemokine 2 (CXCL2). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of C-X-C motif chemokine 2 (CXCL2). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of C-X-C motif chemokine 2 (CXCL2). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of C-X-C motif chemokine 2 (CXCL2). [7]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of C-X-C motif chemokine 2 (CXCL2). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of C-X-C motif chemokine 2 (CXCL2). [9]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of C-X-C motif chemokine 2 (CXCL2). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of C-X-C motif chemokine 2 (CXCL2). [12]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of C-X-C motif chemokine 2 (CXCL2). [13]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of C-X-C motif chemokine 2 (CXCL2). [14]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of C-X-C motif chemokine 2 (CXCL2). [15]
Selenium DM25CGV Approved Selenium increases the expression of C-X-C motif chemokine 2 (CXCL2). [16]
Progesterone DMUY35B Approved Progesterone decreases the expression of C-X-C motif chemokine 2 (CXCL2). [13]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of C-X-C motif chemokine 2 (CXCL2). [17]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of C-X-C motif chemokine 2 (CXCL2). [18]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of C-X-C motif chemokine 2 (CXCL2). [19]
Nicotine DMWX5CO Approved Nicotine decreases the expression of C-X-C motif chemokine 2 (CXCL2). [20]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of C-X-C motif chemokine 2 (CXCL2). [21]
Amphotericin B DMTAJQE Approved Amphotericin B increases the expression of C-X-C motif chemokine 2 (CXCL2). [22]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of C-X-C motif chemokine 2 (CXCL2). [23]
Methamphetamine DMPM4SK Approved Methamphetamine increases the expression of C-X-C motif chemokine 2 (CXCL2). [24]
Prednisolone DMQ8FR2 Approved Prednisolone decreases the expression of C-X-C motif chemokine 2 (CXCL2). [21]
Diphenylpyraline DMW4X37 Approved Diphenylpyraline decreases the expression of C-X-C motif chemokine 2 (CXCL2). [25]
Ritonavir DMU764S Approved Ritonavir decreases the expression of C-X-C motif chemokine 2 (CXCL2). [26]
Methylprednisolone DM4BDON Approved Methylprednisolone decreases the expression of C-X-C motif chemokine 2 (CXCL2). [21]
Bleomycin DMNER5S Approved Bleomycin increases the expression of C-X-C motif chemokine 2 (CXCL2). [27]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of C-X-C motif chemokine 2 (CXCL2). [28]
Curcumin DMQPH29 Phase 3 Curcumin decreases the expression of C-X-C motif chemokine 2 (CXCL2). [29]
Fenretinide DMRD5SP Phase 3 Fenretinide increases the expression of C-X-C motif chemokine 2 (CXCL2). [30]
HMPL-004 DM29XGY Phase 3 HMPL-004 increases the expression of C-X-C motif chemokine 2 (CXCL2). [31]
Bardoxolone methyl DMODA2X Phase 3 Bardoxolone methyl increases the expression of C-X-C motif chemokine 2 (CXCL2). [31]
DNCB DMDTVYC Phase 2 DNCB increases the expression of C-X-C motif chemokine 2 (CXCL2). [32]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of C-X-C motif chemokine 2 (CXCL2). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of C-X-C motif chemokine 2 (CXCL2). [33]
Milchsaure DM462BT Investigative Milchsaure increases the expression of C-X-C motif chemokine 2 (CXCL2). [34]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of C-X-C motif chemokine 2 (CXCL2). [31]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of C-X-C motif chemokine 2 (CXCL2). [35]
Paraquat DMR8O3X Investigative Paraquat increases the expression of C-X-C motif chemokine 2 (CXCL2). [36]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of C-X-C motif chemokine 2 (CXCL2). [37]
Phencyclidine DMQBEYX Investigative Phencyclidine increases the expression of C-X-C motif chemokine 2 (CXCL2). [38]
Manganese DMKT129 Investigative Manganese increases the expression of C-X-C motif chemokine 2 (CXCL2). [39]
Resorcinol DMM37C0 Investigative Resorcinol decreases the expression of C-X-C motif chemokine 2 (CXCL2). [40]
crotylaldehyde DMTWRQI Investigative crotylaldehyde decreases the expression of C-X-C motif chemokine 2 (CXCL2). [41]
Bilirubin DMI0V4O Investigative Bilirubin increases the expression of C-X-C motif chemokine 2 (CXCL2). [42]
2-tert-butylbenzene-1,4-diol DMNXI1E Investigative 2-tert-butylbenzene-1,4-diol increases the expression of C-X-C motif chemokine 2 (CXCL2). [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 47 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Temozolomide DMKECZD Approved Temozolomide decreases the secretion of C-X-C motif chemokine 2 (CXCL2). [10]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
8 Gene expression profiles in peripheral lymphocytes by arsenic exposure and skin lesion status in a Bangladeshi population. Cancer Epidemiol Biomarkers Prev. 2006 Jul;15(7):1367-75. doi: 10.1158/1055-9965.EPI-06-0106.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Considering temozolomide as a novel potential treatment for esophageal cancer. Cancer. 2011 May 1;117(9):2004-16. doi: 10.1002/cncr.25687. Epub 2010 Nov 8.
11 Global effects of inorganic arsenic on gene expression profile in human macrophages. Mol Immunol. 2009 Feb;46(4):649-56.
12 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
13 Progesterone and calcitriol attenuate inflammatory cytokines CXCL1 and CXCL2 in ovarian and endometrial cancer cells. J Cell Biochem. 2012 Oct;113(10):3143-52. doi: 10.1002/jcb.24191.
14 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
15 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
16 Changes in gene expression profiles in response to selenium supplementation among individuals with arsenic-induced pre-malignant skin lesions. Toxicol Lett. 2007 Mar 8;169(2):162-76. doi: 10.1016/j.toxlet.2007.01.006. Epub 2007 Jan 19.
17 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
18 Cannabidiol enhances cytotoxicity of anti-cancer drugs in human head and neck squamous cell carcinoma. Sci Rep. 2020 Nov 26;10(1):20622. doi: 10.1038/s41598-020-77674-y.
19 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
20 Effects of tobacco compounds on gene expression in fetal lung fibroblasts. Environ Toxicol. 2008 Aug;23(4):423-34.
21 Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther. 2009;11(1):R15.
22 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
23 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
24 Methamphetamine alters the normal progression by inducing cell cycle arrest in astrocytes. PLoS One. 2014 Oct 7;9(10):e109603.
25 Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: Effects on inflammatory lung markers. J Allergy Clin Immunol. 2016 Dec;138(6):1690-1700. doi: 10.1016/j.jaci.2016.02.038. Epub 2016 Apr 24.
26 Transcriptional profiling suggests that Nevirapine and Ritonavir cause drug induced liver injury through distinct mechanisms in primary human hepatocytes. Chem Biol Interact. 2016 Aug 5;255:31-44.
27 Agents associated with lung inflammation induce similar responses in NCI-H292 lung epithelial cells. Toxicol In Vitro. 2008 Oct;22(7):1782-8.
28 Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drugs Ther. 2013 Feb;27(1):37-48. doi: 10.1007/s10557-012-6427-8.
29 Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFkappaB. Carcinogenesis. 2008 Apr;29(4):779-89.
30 The transforming growth factor-beta family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl)retinamide. Clin Cancer Res. 2005 Jun 15;11(12):4610-9.
31 Mapping the dynamics of Nrf2 antioxidant and NFB inflammatory responses by soft electrophilic chemicals in human liver cells defines the transition from adaptive to adverse responses. Toxicol In Vitro. 2022 Oct;84:105419. doi: 10.1016/j.tiv.2022.105419. Epub 2022 Jun 17.
32 Upregulation of genes orchestrating keratinocyte differentiation, including the novel marker gene ID2, by contact sensitizers in human bulge-derived keratinocytes. J Biochem Mol Toxicol. 2010 Jan-Feb;24(1):10-20.
33 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
34 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
35 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
36 CD34+ derived macrophage and dendritic cells display differential responses to paraquat. Toxicol In Vitro. 2021 Sep;75:105198. doi: 10.1016/j.tiv.2021.105198. Epub 2021 Jun 9.
37 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
38 Differential response of Mono Mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environ Health Perspect. 2007 Sep;115(9):1325-32.
39 Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology. 2007 May;28(3):478-89.
40 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
41 Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde. Toxicol Lett. 2010 Aug 16;197(2):113-22.
42 Global changes in gene regulation demonstrate that unconjugated bilirubin is able to upregulate and activate select components of the endoplasmic reticulum stress response pathway. J Biochem Mol Toxicol. 2010 Mar-Apr;24(2):73-88.
43 Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006 Jan 10;24(2):274-87. doi: 10.1200/JCO.2005.02.9405. Epub 2005 Dec 19.