General Information of Drug Off-Target (DOT) (ID: OTG3JNOQ)

DOT Name Probable helicase senataxin (SETX)
Synonyms EC 3.6.4.-; Amyotrophic lateral sclerosis 4 protein; SEN1 homolog; Senataxin
Gene Name SETX
Related Disease
Amyotrophic lateral sclerosis type 4 ( )
Anaplastic astrocytoma ( )
Distal hereditary motor neuropathy ( )
Microcephaly with or without chorioretinopathy, lymphedema, or intellectual disability ( )
Spinocerebellar ataxia, autosomal recessive, with axonal neuropathy 2 ( )
Adult lymphoma ( )
Advanced cancer ( )
Alzheimer disease ( )
Ataxia, early-onset, with oculomotor apraxia and hypoalbuminemia ( )
Ataxia-telangiectasia-like disorder ( )
Ataxia-telangiectasia-like disorder 1 ( )
Azoospermia ( )
Charcot marie tooth disease ( )
Charlevoix-Saguenay spastic ataxia ( )
Dystonia ( )
Familial isolated deficiency of vitamin E ( )
Friedreich ataxia 1 ( )
Friedreich's ataxia ( )
Hereditary ataxia ( )
Hypogonadism ( )
leukaemia ( )
Leukemia ( )
Lung adenocarcinoma ( )
Lymphoma ( )
Motor neurone disease ( )
Movement disorder ( )
Nervous system disease ( )
Oligospermia ( )
Pediatric lymphoma ( )
Polyneuropathy ( )
Prostate cancer ( )
Prostate carcinoma ( )
Proximal spinal muscular atrophy ( )
Schwartz-Jampel syndrome ( )
Spinal muscular atrophy ( )
Toxic epidermal necrolysis ( )
Trichohepatoenteric syndrome ( )
Tuberculosis ( )
Female hypogonadism ( )
Frontotemporal dementia ( )
Juvenile amyotrophic lateral sclerosis ( )
Spinocerebellar ataxia type 31 ( )
Amyotrophic lateral sclerosis type 2, juvenile ( )
Congenital generalized lipodystrophy ( )
Peripheral neuropathy ( )
Progressive supranuclear palsy ( )
UniProt ID
SETX_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.6.4.-
Pfam ID
PF13086 ; PF13087
Sequence
MSTCCWCTPGGASTIDFLKRYASNTPSGEFQTADEDLCYCLECVAEYHKARDELPFLHEV
LWELETLRLINHFEKSMKAEIGDDDELYIVDNNGEMPLFDITGQDFENKLRVPLLEILKY
PYLLLHERVNELCVEALCRMEQANCSFQVFDKHPGIYLFLVHPNEMVRRWAILTARNLGK
VDRDDYYDLQEVLLCLFKVIELGLLESPDIYTSSVLEKGKLILLPSHMYDTTNYKSYWLG
ICMLLTILEEQAMDSLLLGSDKQNDFMQSILHTMEREADDDSVDPFWPALHCFMVILDRL
GSKVWGQLMDPIVAFQTIINNASYNREIRHIRNSSVRTKLEPESYLDDMVTCSQIVYNYN
PEKTKKDSGWRTAICPDYCPNMYEEMETLASVLQSDIGQDMRVHNSTFLWFIPFVQSLMD
LKDLGVAYIAQVVNHLYSEVKEVLNQTDAVCDKVTEFFLLILVSVIELHRNKKCLHLLWV
SSQQWVEAVVKCAKLPTTAFTRSSEKSSGNCSKGTAMISSLSLHSMPSNSVQLAYVQLIR
SLLKEGYQLGQQSLCKRFWDKLNLFLRGNLSLGWQLTSQETHELQSCLKQIIRNIKFKAP
PCNTFVDLTSACKISPASYNKEESEQMGKTSRKDMHCLEASSPTFSKEPMKVQDSVLIKA
DNTIEGDNNEQNYIKDVKLEDHLLAGSCLKQSSKNIFTERAEDQIKISTRKQKSVKEISS
YTPKDCTSRNGPERGCDRGIIVSTRLLTDSSTDALEKVSTSNEDFSLKDDALAKTSKRKT
KVQKDEICAKLSHVIKKQHRKSTLVDNTINLDENLTVSNIESFYSRKDTGVQKGDGFIHN
LSLDPSGVLDDKNGEQKSQNNVLPKEKQLKNEELVIFSFHENNCKIQEFHVDGKELIPFT
EMTNASEKKSSPFKDLMTVPESRDEEMSNSTSVIYSNLTREQAPDISPKSDTLTDSQIDR
DLHKLSLLAQASVITFPSDSPQNSSQLQRKVKEDKRCFTANQNNVGDTSRGQVIIISDSD
DDDDERILSLEKLTKQDKICLEREHPEQHVSTVNSKEEKNPVKEEKTETLFQFEESDSQC
FEFESSSEVFSVWQDHPDDNNSVQDGEKKCLAPIANTTNGQGCTDYVSEVVKKGAEGIEE
HTRPRSISVEEFCEIEVKKPKRKRSEKPMAEDPVRPSSSVRNEGQSDTNKRDLVGNDFKS
IDRRTSTPNSRIQRATTVSQKKSSKLCTCTEPIRKVPVSKTPKKTHSDAKKGQNRSSNYL
SCRTTPAIVPPKKFRQCPEPTSTAEKLGLKKGPRKAYELSQRSLDYVAQLRDHGKTVGVV
DTRKKTKLISPQNLSVRNNKKLLTSQELQMQRQIRPKSQKNRRRLSDCESTDVKRAGSHT
AQNSDIFVPESDRSDYNCTGGTEVLANSNRKQLIKCMPSEPETIKAKHGSPATDDACPLN
QCDSVVLNGTVPTNEVIVSTSEDPLGGGDPTARHIEMAALKEGEPDSSSDAEEDNLFLTQ
NDPEDMDLCSQMENDNYKLIELIHGKDTVEVEEDSVSRPQLESLSGTKCKYKDCLETTKN
QGEYCPKHSEVKAADEDVFRKPGLPPPASKPLRPTTKIFSSKSTSRIAGLSKSLETSSAL
SPSLKNKSKGIQSILKVPQPVPLIAQKPVGEMKNSCNVLHPQSPNNSNRQGCKVPFGESK
YFPSSSPVNILLSSQSVSDTFVKEVLKWKYEMFLNFGQCGPPASLCQSISRPVPVRFHNY
GDYFNVFFPLMVLNTFETVAQEWLNSPNRENFYQLQVRKFPADYIKYWEFAVYLEECELA
KQLYPKENDLVFLAPERINEEKKDTERNDIQDLHEYHSGYVHKFRRTSVMRNGKTECYLS
IQTQENFPANLNELVNCIVISSLVTTQRKLKAMSLLGSRNQLARAVLNPNPMDFCTKDLL
TTTSERIIAYLRDFNEDQKKAIETAYAMVKHSPSVAKICLIHGPPGTGKSKTIVGLLYRL
LTENQRKGHSDENSNAKIKQNRVLVCAPSNAAVDELMKKIILEFKEKCKDKKNPLGNCGD
INLVRLGPEKSINSEVLKFSLDSQVNHRMKKELPSHVQAMHKRKEFLDYQLDELSRQRAL
CRGGREIQRQELDENISKVSKERQELASKIKEVQGRPQKTQSIIILESHIICCTLSTSGG
LLLESAFRGQGGVPFSCVIVDEAGQSCEIETLTPLIHRCNKLILVGDPKQLPPTVISMKA
QEYGYDQSMMARFCRLLEENVEHNMISRLPILQLTVQYRMHPDICLFPSNYVYNRNLKTN
RQTEAIRCSSDWPFQPYLVFDVGDGSERRDNDSYINVQEIKLVMEIIKLIKDKRKDVSFR
NIGIITHYKAQKTMIQKDLDKEFDRKGPAEVDTVDAFQGRQKDCVIVTCVRANSIQGSIG
FLASLQRLNVTITRAKYSLFILGHLRTLMENQHWNQLIQDAQKRGAIIKTCDKNYRHDAV
KILKLKPVLQRSLTHPPTIAPEGSRPQGGLPSSKLDSGFAKTSVAASLYHTPSDSKEITL
TVTSKDPERPPVHDQLQDPRLLKRMGIEVKGGIFLWDPQPSSPQHPGATPPTGEPGFPVV
HQDLSHIQQPAAVVAALSSHKPPVRGEPPAASPEASTCQSKCDDPEEELCHRREARAFSE
GEQEKCGSETHHTRRNSRWDKRTLEQEDSSSKKRKLL
Function
Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription. Contributes to the mRNA splicing efficiency and splice site selection. Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination. Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation. Involved in DNA double-strand breaks damage response generated by oxidative stress. In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage. Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription. Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis.
Tissue Specificity
Highly expressed in skeletal muscle. Expressed in heart, fibroblast, placenta and liver. Weakly expressed in brain and lung. Expressed in the cortex of the kidney (highly expressed in tubular epithelial cells but low expression in the glomerulus).
KEGG Pathway
Amyotrophic lateral sclerosis (hsa05014 )

Molecular Interaction Atlas (MIA) of This DOT

46 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Amyotrophic lateral sclerosis type 4 DISSDHYG Definitive Autosomal dominant [1]
Anaplastic astrocytoma DISSBE0K Definitive Biomarker [2]
Distal hereditary motor neuropathy DISGS2ID Definitive Autosomal dominant [3]
Microcephaly with or without chorioretinopathy, lymphedema, or intellectual disability DISFHDE1 Definitive Genetic Variation [4]
Spinocerebellar ataxia, autosomal recessive, with axonal neuropathy 2 DIS84UUI Definitive Autosomal recessive [1]
Adult lymphoma DISK8IZR Strong Biomarker [5]
Advanced cancer DISAT1Z9 Strong Biomarker [5]
Alzheimer disease DISF8S70 Strong Genetic Variation [6]
Ataxia, early-onset, with oculomotor apraxia and hypoalbuminemia DIS8CFD7 Strong Genetic Variation [7]
Ataxia-telangiectasia-like disorder DIS98DFM Strong Genetic Variation [8]
Ataxia-telangiectasia-like disorder 1 DISKHZ2U Strong Genetic Variation [8]
Azoospermia DIS94181 Strong Genetic Variation [9]
Charcot marie tooth disease DIS3BT2L Strong Biomarker [10]
Charlevoix-Saguenay spastic ataxia DISE8X81 Strong Genetic Variation [11]
Dystonia DISJLFGW Strong Genetic Variation [12]
Familial isolated deficiency of vitamin E DIS53306 Strong Genetic Variation [11]
Friedreich ataxia 1 DIS285GE Strong Biomarker [13]
Friedreich's ataxia DIS5DV35 Strong Biomarker [14]
Hereditary ataxia DIS6JNI3 Strong Biomarker [10]
Hypogonadism DISICMNI Strong Biomarker [15]
leukaemia DISS7D1V Strong Biomarker [5]
Leukemia DISNAKFL Strong Biomarker [5]
Lung adenocarcinoma DISD51WR Strong Biomarker [16]
Lymphoma DISN6V4S Strong Biomarker [5]
Motor neurone disease DISUHWUI Strong Biomarker [17]
Movement disorder DISOJJ2D Strong Genetic Variation [12]
Nervous system disease DISJ7GGT Strong Biomarker [18]
Oligospermia DIS6YJF3 Strong Genetic Variation [9]
Pediatric lymphoma DIS51BK2 Strong Biomarker [5]
Polyneuropathy DISB9G3W Strong Biomarker [19]
Prostate cancer DISF190Y Strong Biomarker [20]
Prostate carcinoma DISMJPLE Strong Biomarker [20]
Proximal spinal muscular atrophy DIS0R70E Strong Genetic Variation [21]
Schwartz-Jampel syndrome DIS3HCR8 Strong Biomarker [22]
Spinal muscular atrophy DISTLKOB Strong Altered Expression [23]
Toxic epidermal necrolysis DISIWPFR Strong Biomarker [22]
Trichohepatoenteric syndrome DISL3ODF Strong Biomarker [6]
Tuberculosis DIS2YIMD Strong Biomarker [24]
Female hypogonadism DISWASB4 moderate Biomarker [25]
Frontotemporal dementia DISKYHXL moderate Genetic Variation [26]
Juvenile amyotrophic lateral sclerosis DISKDZC9 moderate Genetic Variation [27]
Spinocerebellar ataxia type 31 DISUPR8L Disputed Genetic Variation [28]
Amyotrophic lateral sclerosis type 2, juvenile DISYFHD8 Limited Genetic Variation [29]
Congenital generalized lipodystrophy DIS4XF8N Limited Biomarker [30]
Peripheral neuropathy DIS7KN5G Limited Genetic Variation [12]
Progressive supranuclear palsy DISO5KRQ Limited Genetic Variation [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Probable helicase senataxin (SETX). [31]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Probable helicase senataxin (SETX). [32]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Probable helicase senataxin (SETX). [33]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of Probable helicase senataxin (SETX). [34]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Probable helicase senataxin (SETX). [35]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Probable helicase senataxin (SETX). [36]
Clozapine DMFC71L Approved Clozapine increases the expression of Probable helicase senataxin (SETX). [36]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of Probable helicase senataxin (SETX). [34]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of Probable helicase senataxin (SETX). [34]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Probable helicase senataxin (SETX). [39]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Probable helicase senataxin (SETX). [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 affects the sumoylation of Probable helicase senataxin (SETX). [37]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Probable helicase senataxin (SETX). [38]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Probable helicase senataxin (SETX). [38]
------------------------------------------------------------------------------------

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 1p/19q codeletion and IDH1/2 mutation identified a subtype of anaplastic oligoastrocytomas with prognosis as favorable as anaplastic oligodendrogliomas.Neuro Oncol. 2013 Jun;15(6):775-82. doi: 10.1093/neuonc/not027. Epub 2013 Mar 13.
3 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
4 Genetic analysis of undiagnosed ataxia-telangiectasia-like disorders.Brain Dev. 2019 Feb;41(2):150-157. doi: 10.1016/j.braindev.2018.09.007. Epub 2018 Oct 6.
5 Novel mutations in ataxia telangiectasia and AOA2 associated with prolonged survival.J Neurol Sci. 2013 Dec 15;335(1-2):134-8. doi: 10.1016/j.jns.2013.09.014. Epub 2013 Sep 17.
6 Association of genetic variants in senataxin and Alzheimer's disease in a Chinese Han population in Taiwan.Chin J Physiol. 2014 Apr 30;57(2):83-9. doi: 10.4077/CJP.2014.BAC228.
7 Characterization of two novel SETX mutations in AOA2 patients reveals aspects of the pathophysiological role of senataxin.Neurogenetics. 2010 Feb;11(1):91-100. doi: 10.1007/s10048-009-0206-0. Epub 2009 Jul 11.
8 Clinical and molecular characterization of ataxia with oculomotor apraxia patients in Saudi Arabia.BMC Med Genet. 2011 Feb 16;12:27. doi: 10.1186/1471-2350-12-27.
9 Disruption of Spermatogenesis and Infertility in Ataxia with Oculomotor Apraxia Type 2 (AOA2).Cerebellum. 2019 Jun;18(3):448-456. doi: 10.1007/s12311-019-01012-w.
10 Advantages and pitfalls of an extended gene panel for investigating complex neurometabolic phenotypes.Brain. 2016 Nov 1;139(11):2844-2854. doi: 10.1093/brain/aww221.
11 Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management.Neurogenetics. 2010 Feb;11(1):1-12. doi: 10.1007/s10048-009-0196-y. Epub 2009 May 14.
12 Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients.Brain. 2009 Oct;132(Pt 10):2688-98. doi: 10.1093/brain/awp211. Epub 2009 Aug 20.
13 Investigation of recessive ataxia loci in patients with young age of onset.Neuropediatrics. 2007 Aug;38(4):207-9. doi: 10.1055/s-2007-990268.
14 Autosomal recessive cerebellar ataxias.Orphanet J Rare Dis. 2006 Nov 17;1:47. doi: 10.1186/1750-1172-1-47.
15 Germ cell arrest associated with aSETX mutation in ataxia oculomotor apraxia type 2.Reprod Biomed Online. 2019 Jun;38(6):961-965. doi: 10.1016/j.rbmo.2018.12.042. Epub 2019 Jan 9.
16 Association of specific gene mutations derived from machine learning with survival in lung adenocarcinoma.PLoS One. 2018 Nov 12;13(11):e0207204. doi: 10.1371/journal.pone.0207204. eCollection 2018.
17 Unwinding the role of senataxin in neurodegeneration.Discov Med. 2015 Feb;19(103):127-36.
18 Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations.Nat Commun. 2018 Feb 7;9(1):533. doi: 10.1038/s41467-018-02894-w.
19 Ataxia with oculomotor apraxia type 2: a clinical and genetic study of 19 patients.J Neurol Sci. 2009 Mar 15;278(1-2):77-81. doi: 10.1016/j.jns.2008.12.004. Epub 2009 Jan 11.
20 Repeatability of radiomics and machine learning for DWI: Short-term repeatability study of 112 patients with prostate cancer.Magn Reson Med. 2020 Jun;83(6):2293-2309. doi: 10.1002/mrm.28058. Epub 2019 Nov 8.
21 SETX gene mutation in a family diagnosed autosomal dominant proximal spinal muscular atrophy.Neuromuscul Disord. 2012 Mar;22(3):258-62. doi: 10.1016/j.nmd.2011.09.006. Epub 2011 Nov 15.
22 Associations between HLA class I and cytochrome P450 2C9 genetic polymorphisms and phenytoin-related severe cutaneous adverse reactions in a Thai population.Pharmacogenet Genomics. 2016 May;26(5):225-34. doi: 10.1097/FPC.0000000000000211.
23 Combined deficiency of Senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy.Nucleic Acids Res. 2018 Sep 19;46(16):8326-8346. doi: 10.1093/nar/gky641.
24 A Nanostructured Lipid System to Improve the Oral Bioavailability of Ruthenium(II) Complexes for the Treatment of Infections Caused by Mycobacterium tuberculosis.Front Microbiol. 2018 Dec 6;9:2930. doi: 10.3389/fmicb.2018.02930. eCollection 2018.
25 Sensorimotor neuronopathy in ataxia with oculomotor apraxia type 2.Muscle Nerve. 2009 Sep;40(3):481-5. doi: 10.1002/mus.21328.
26 Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum.JAMA Neurol. 2018 Jul 1;75(7):860-875. doi: 10.1001/jamaneurol.2018.0372.
27 A novel SETX gene mutation associated with Juvenile amyotrophic lateral sclerosis.Brain Behav. 2018 Sep;8(9):e01066. doi: 10.1002/brb3.1066. Epub 2018 Jul 27.
28 Mutations in rare ataxia genes are uncommon causes of sporadic cerebellar ataxia.Mov Disord. 2012 Mar;27(3):442-6. doi: 10.1002/mds.24064. Epub 2012 Jan 27.
29 Autosomal recessive ataxia with peripheral neuropathy and elevated AFP: novel mutations in SETX.Neurology. 2006 May 23;66(10):1580-1. doi: 10.1212/01.wnl.0000216135.59699.9b.
30 Relative contribution of mutations in genes for autosomal dominant distal hereditary motor neuropathies: a genotype-phenotype correlation study.Brain. 2008 May;131(Pt 5):1217-27. doi: 10.1093/brain/awn029. Epub 2008 Mar 5.
31 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
32 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
33 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
34 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
35 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
36 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
37 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
38 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
39 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
40 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.