General Information of Disease (ID: DIS94181)

Disease Name Azoospermia
Disease Class GB04: Male infertility
Definition A male infertility disease characterized by the absence of any measurable level of sperm in semen.
Disease Hierarchy
DISY3YZZ: Male infertility
DIS94181: Azoospermia
ICD Code
ICD-11
ICD-11: GB04.0
Disease Identifiers
MONDO ID
MONDO_0100459
MESH ID
D053713
UMLS CUI
C0004509
MedGen ID
2150
HPO ID
HP:0000027
SNOMED CT ID
425558002

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 1 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
13-cis-retinoic acid DMTZ1A5 Phase 3 NA [1]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 22 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
SOX5 TTXHSZK Limited Genetic Variation [2]
ALB TTFNGC9 moderate Therapeutic [3]
AR TTKPW01 moderate Genetic Variation [4]
ADAMTS5 TTXSU2Y Strong Biomarker [5]
BRCA2 TTUARD6 Strong Genetic Variation [6]
BRD2 TTDP48B Strong Altered Expression [7]
CACNA2D1 TTFK1JQ Strong Biomarker [8]
CFTR TTRLZHP Strong Genetic Variation [9]
DMPK TTZQTY2 Strong Genetic Variation [10]
DNMT3L TT3FDAV Strong Genetic Variation [11]
KISS1R TT3KBZY Strong Genetic Variation [12]
KIT TTX41N9 Strong Genetic Variation [13]
LIPE TTLUQ8E Strong Biomarker [14]
NR0B1 TTTK36V Strong Genetic Variation [15]
OAT TTTSCQ2 Strong Genetic Variation [16]
PARP2 TTQ4V96 Strong Biomarker [17]
PGD TTZ3IFB Strong Biomarker [18]
PLK4 TTGPNZQ Strong Genetic Variation [19]
SLC9A3 TTFZVPO Strong Biomarker [20]
SRD5A2 TTT02K8 Strong Genetic Variation [21]
THRB TTGER3L Strong Biomarker [22]
USP2 TTUEQ1W Strong Genetic Variation [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 DTT(s)
This Disease Is Related to 61 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
PLCH2 OTYERO80 Limited Genetic Variation [2]
BSCL2 OT73V6Y4 moderate Biomarker [24]
FANCM OTNJG99Z moderate Genetic Variation [25]
ART3 OT68OFVT Strong Altered Expression [26]
BPY2 OT2WQPNQ Strong Biomarker [27]
CCNA1 OTX4HD45 Strong Genetic Variation [28]
CDY1 OTQVDS8D Strong Genetic Variation [29]
DDX25 OTF36NBP Strong Biomarker [22]
DDX3Y OTKL1FNX Strong Genetic Variation [30]
DNAH1 OTDZ26FJ Strong Genetic Variation [31]
DPP6 OTWW3H0K Strong Biomarker [8]
EIF1AY OTWVDOJU Strong Altered Expression [32]
ESX1 OTZUPU2C Strong Altered Expression [33]
FKBP6 OTDFQV81 Strong Genetic Variation [34]
GTF2A1L OTDQHVAI Strong Genetic Variation [35]
H2BW1 OT7ZCPKK Strong Genetic Variation [36]
H3-4 OTY6ITYF Strong Biomarker [37]
HORMAD1 OT7DR5T2 Strong Genetic Variation [38]
HSF2 OTXNJIJ9 Strong Genetic Variation [39]
HSFY2 OTG2O6S4 Strong Genetic Variation [40]
HSPA2 OTSDET7B Strong Biomarker [41]
LMTK2 OT93MVIC Strong Genetic Variation [42]
LRWD1 OTHRVJQC Strong Genetic Variation [43]
MAGEB4 OTZEFR8N Strong Genetic Variation [44]
MEI1 OTD34H3B Strong Genetic Variation [45]
MEIOB OTTX5TF0 Strong Genetic Variation [46]
MLH3 OT91PPBI Strong Genetic Variation [47]
MSH5 OTDARQT3 Strong Genetic Variation [48]
NLRP14 OT1XAQYM Strong Genetic Variation [49]
NPHS2 OTLCNUII Strong Altered Expression [50]
NR5A1 OTOULYR4 Strong Genetic Variation [51]
PANK2 OTFBW889 Strong Biomarker [52]
PGK2 OTMD662Q Strong Biomarker [53]
PIWIL4 OTDA9MY0 Strong Altered Expression [54]
PRDM9 OTWAHLUR Strong Biomarker [55]
PRM1 OT6HWA11 Strong Biomarker [33]
PRM2 OTSAXTSQ Strong Biomarker [53]
PSMC3IP OT9UB5UO Strong Genetic Variation [56]
PYGO2 OTZHB2OI Strong Genetic Variation [57]
RAD21L1 OTKI9XNB Strong Biomarker [58]
RBM5 OTCBWHHV Strong Genetic Variation [59]
RBMY1A1 OTM2F25H Strong Biomarker [60]
REC8 OT6JAVXE Strong Genetic Variation [61]
SBF1 OTW6I9RV Strong Biomarker [62]
SEPTIN12 OTFUKRXA Strong Genetic Variation [63]
SETX OTG3JNOQ Strong Genetic Variation [64]
SNRNP70 OTP52YZ3 Strong Biomarker [38]
SPATA17 OT6SK923 Strong Genetic Variation [65]
SPATA25 OTJMFF0A Strong Altered Expression [66]
SPINK2 OTSFBT0G Strong Biomarker [67]
SPO11 OTP49B2R Strong Genetic Variation [68]
SRY OT516T6D Strong Genetic Variation [69]
STRA8 OT3DKIYB Strong Genetic Variation [70]
SYCP3 OTKOF54H Strong Genetic Variation [23]
TDRD7 OTK639ET Strong Biomarker [71]
TDRD9 OTS4UBI8 Strong Altered Expression [72]
TEX101 OTNO747E Strong Biomarker [73]
TEX11 OTJDBGSS Strong Genetic Variation [74]
TNP1 OTKQH7E5 Strong Biomarker [33]
TSPY1 OTPY57X4 Strong Altered Expression [75]
TSPYL1 OTVVPELG Strong Genetic Variation [76]
------------------------------------------------------------------------------------
⏷ Show the Full List of 61 DOT(s)

References

1 ClinicalTrials.gov (NCT03323801) RA-4: 13-cis Retinoic Acid for Treatment of Men With Azoospermia. U.S. National Institutes of Health.
2 A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia.Nat Genet. 2011 Dec 25;44(2):183-6. doi: 10.1038/ng.1040.
3 Tyrosine phosphorylation of dihydrolipoamide dehydrogenase as a potential cadmium target and its inhibitory role in regulating mouse sperm motility.Toxicology. 2016 May 16;357-358:52-64. doi: 10.1016/j.tox.2016.06.003. Epub 2016 Jun 8.
4 Spermatogenesis disorder is associated with mutations in the ligand-binding domain of an androgen receptor.Andrologia. 2019 Nov;51(10):e13376. doi: 10.1111/and.13376. Epub 2019 Aug 2.
5 ADAMTS1 and ADAMTS5 metalloproteases produced by Sertoli cells: a potential diagnostic marker in azoospermia.Syst Biol Reprod Med. 2019 Feb;65(1):29-38. doi: 10.1080/19396368.2018.1467512. Epub 2018 May 8.
6 The common variant N372H in BRCA2 gene may be associated with idiopathic male infertility with azoospermia or severe oligozoospermia.Eur J Obstet Gynecol Reprod Biol. 2006 Jan 1;124(1):61-4. doi: 10.1016/j.ejogrb.2005.09.001. Epub 2005 Oct 27.
7 FSHB -211 G>T Polymorphism as Predictor for TESE Success in Patients With Unexplained Azoospermia.J Clin Endocrinol Metab. 2019 Jun 1;104(6):2315-2324. doi: 10.1210/jc.2018-02249.
8 Mapping breakpoints of a familial chromosome insertion (18,7) (q22.1; q36.2q21.11) to DPP6 and CACNA2D1 genes in an azoospermic male.Gene. 2014 Aug 15;547(1):43-9. doi: 10.1016/j.gene.2014.06.007. Epub 2014 Jun 14.
9 Improved detection of CFTR variants by targeted next-generation sequencing in male infertility: a case series.Reprod Biomed Online. 2019 Dec;39(6):963-968. doi: 10.1016/j.rbmo.2019.08.005. Epub 2019 Aug 22.
10 CTG amplification in the DM1PK gene is not associated with idiopathic male subfertility.Hum Reprod. 2004 Sep;19(9):2084-7. doi: 10.1093/humrep/deh382. Epub 2004 Jul 29.
11 Association between single-nucleotide polymorphisms of DNMT3L and infertility with azoospermia in Chinese men.Reprod Biomed Online. 2012 Jan;24(1):66-71. doi: 10.1016/j.rbmo.2011.09.004. Epub 2011 Sep 16.
12 Identification of KISS1R gene mutations in disorders of non-obstructive azoospermia in the northeast population of China.J Clin Lab Anal. 2020 Apr;34(4):e23139. doi: 10.1002/jcla.23139. Epub 2019 Dec 10.
13 SNPs in KIT and KITLG genes may be associated with oligospermia in Chinese population.Biomarkers. 2013 Dec;18(8):650-4. doi: 10.3109/1354750X.2013.838307. Epub 2013 Oct 1.
14 Hormone-sensitive lipase deficiency alters gene expression and cholesterol content of mouse testis.Reproduction. 2017 Feb;153(2):175-185. doi: 10.1530/REP-16-0484. Epub 2016 Nov 10.
15 Late-onset X-linked adrenal hypoplasia (DAX-1, NR0B1): two new adult-onset cases from a single center.Pituitary. 2017 Oct;20(5):585-593. doi: 10.1007/s11102-017-0822-x.
16 The results of cytogenetic analysis with regard to intracytoplasmic sperm injection in males, females and fetuses.Fetal Diagn Ther. 2004 Jul-Aug;19(4):313-8. doi: 10.1159/000077958.
17 Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein.Cell Mol Life Sci. 2012 Dec;69(24):4079-92. doi: 10.1007/s00018-012-1003-8. Epub 2012 May 13.
18 Does PGD for aneuploidy screening change the selection of embryos derived from testicular sperm extraction in obstructive and non-obstructive azoospermic men?.Hum Reprod. 2006 Sep;21(9):2390-5. doi: 10.1093/humrep/del177. Epub 2006 Jun 6.
19 A PLK4 mutation causing azoospermia in a man with Sertoli cell-only syndrome.Andrology. 2016 Jan;4(1):75-81. doi: 10.1111/andr.12113. Epub 2015 Oct 9.
20 Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice.PLoS Genet. 2017 Apr 6;13(4):e1006715. doi: 10.1371/journal.pgen.1006715. eCollection 2017 Apr.
21 Steroid 5alpha-reductase 2 gene melting polymorphisms in male subjects with azoospermia or oligospermia.Am J Obstet Gynecol. 1999 Jun;180(6 Pt 1):1394-8. doi: 10.1016/s0002-9378(99)70024-4.
22 Gonadotropin Regulation Testicular RNA Helicase, Two Decades of Studies on Its Structure Function and Regulation From Its Discovery Opens a Window for Development of a Non-hormonal Oral Male Contraceptive.Front Endocrinol (Lausanne). 2019 Aug 29;10:576. doi: 10.3389/fendo.2019.00576. eCollection 2019.
23 Mutations in the chromosome pairing gene FKBP6 are not a common cause of non-obstructive azoospermia.Mol Hum Reprod. 2005 Sep;11(9):673-5. doi: 10.1093/molehr/gah232. Epub 2005 Oct 14.
24 Seipin is necessary for normal brain development and spermatogenesis in addition to adipogenesis.Hum Mol Genet. 2015 Aug 1;24(15):4238-49. doi: 10.1093/hmg/ddv156. Epub 2015 May 1.
25 Bi-allelic Recessive Loss-of-Function Variants in FANCM Cause Non-obstructive Azoospermia. Am J Hum Genet. 2018 Aug 2;103(2):200-212. doi: 10.1016/j.ajhg.2018.07.005.
26 Genome-wide expression of azoospermia testes demonstrates a specific profile and implicates ART3 in genetic susceptibility.PLoS Genet. 2008 Feb;4(2):e26. doi: 10.1371/journal.pgen.0040026.
27 VCY2 protein interacts with the HECT domain of ubiquitin-protein ligase E3A.Biochem Biophys Res Commun. 2002 Sep 6;296(5):1104-11. doi: 10.1016/s0006-291x(02)02040-5.
28 Mutations of the cyclin A1 gene are not a common cause of male infertility.Syst Biol Reprod Med. 2009 Aug;55(4):125-8. doi: 10.3109/19396360902839828.
29 Susceptibility of gr/gr rearrangements to azoospermia or oligozoospermia is dependent on DAZ and CDY1 gene copy deletions.J Assist Reprod Genet. 2015 Sep;32(9):1333-41. doi: 10.1007/s10815-015-0520-4. Epub 2015 Jul 7.
30 Progress in understanding the molecular functions of DDX3Y (DBY) in male germ cell development and maintenance.Biosci Trends. 2017 Mar 22;11(1):46-53. doi: 10.5582/bst.2016.01216. Epub 2017 Feb 12.
31 Associations between DNAH1 gene polymorphisms and male infertility: A retrospective study.Medicine (Baltimore). 2018 Dec;97(49):e13493. doi: 10.1097/MD.0000000000013493.
32 Expression profile of AZF genes in testicular biopsies of azoospermic men.Hum Reprod. 2007 Jan;22(1):151-8. doi: 10.1093/humrep/del341. Epub 2006 Aug 26.
33 Could analysis of testis-specific genes, as biomarkers in seminal plasma, predict presence of focal spermatogenesis in non-obstructive azoospermia?.Andrologia. 2020 Mar;52(2):e13483. doi: 10.1111/and.13483. Epub 2019 Dec 3.
34 Alterations in the steroid hormone receptor co-chaperone FKBPL are associated with male infertility: a case-control study.Reprod Biol Endocrinol. 2010 Mar 8;8:22. doi: 10.1186/1477-7827-8-22.
35 Association of single nucleotide polymorphisms in the USF1, GTF2A1L and OR2W3 genes with non-obstructive azoospermia in the Chinese population.J Assist Reprod Genet. 2015 Jan;32(1):95-101. doi: 10.1007/s10815-014-0369-y. Epub 2014 Nov 6.
36 Relationship of SNP of H2BFWT gene to male infertility in a Chinese population with idiopathic spermatogenesis impairment.Biomarkers. 2012 Aug;17(5):402-6. doi: 10.3109/1354750X.2012.677066. Epub 2012 Apr 17.
37 Testis-Specific Histone Variant H3t Gene Is Essential for Entry into Spermatogenesis.Cell Rep. 2017 Jan 17;18(3):593-600. doi: 10.1016/j.celrep.2016.12.065.
38 Single-nucleotide polymorphisms in HORMAD1 may be a risk factor for azoospermia caused by meiotic arrest in Japanese patients.Asian J Androl. 2012 Jul;14(4):580-3. doi: 10.1038/aja.2011.180. Epub 2012 Mar 12.
39 A dominant-negative mutation of HSF2 associated with idiopathic azoospermia.Hum Genet. 2013 Feb;132(2):159-65. doi: 10.1007/s00439-012-1234-7. Epub 2012 Oct 14.
40 Molecular characterization of heat shock-like factor encoded on the human Y chromosome, and implications for male infertility.Biol Reprod. 2004 Jul;71(1):297-306. doi: 10.1095/biolreprod.103.023580. Epub 2004 Mar 24.
41 Copy number variation associated with meiotic arrest in idiopathic male infertility.Fertil Steril. 2015 Jan;103(1):214-9. doi: 10.1016/j.fertnstert.2014.09.030. Epub 2014 Oct 25.
42 LMTK2 and PARP-2 gene polymorphism and azoospermia secondary to meiotic arrest.J Assist Reprod Genet. 2009 Sep-Oct;26(9-10):545-52. doi: 10.1007/s10815-009-9347-1. Epub 2009 Oct 6.
43 Single-nucleotide polymorphisms in the LRWD1 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome.Andrologia. 2014 Apr;46(3):273-6. doi: 10.1111/and.12077. Epub 2013 Feb 28.
44 A no-stop mutation in MAGEB4 is a possible cause of rare X-linked azoospermia and oligozoospermia in a consanguineous Turkish family.J Assist Reprod Genet. 2017 May;34(5):683-694. doi: 10.1007/s10815-017-0900-z. Epub 2017 Apr 11.
45 Polymorphic alleles of the human MEI1 gene are associated with human azoospermia by meiotic arrest.J Hum Genet. 2006;51(6):533-540. doi: 10.1007/s10038-006-0394-5. Epub 2006 May 9.
46 A new MEIOB mutation is a recurrent cause for azoospermia and testicular meiotic arrest.Hum Reprod. 2019 Apr 1;34(4):666-671. doi: 10.1093/humrep/dez016.
47 The role of MSH5 C85T and MLH3 C2531T polymorphisms in the risk of male infertility with azoospermia or severe oligozoospermia.Clin Chim Acta. 2010 Jan;411(1-2):49-52. doi: 10.1016/j.cca.2009.09.038. Epub 2009 Oct 3.
48 Common variants in mismatch repair genes associated with increased risk of sperm DNA damage and male infertility.BMC Med. 2012 May 17;10:49. doi: 10.1186/1741-7015-10-49.
49 Mutations in the testis-specific NALP14 gene in men suffering from spermatogenic failure.Hum Reprod. 2006 Dec;21(12):3178-84. doi: 10.1093/humrep/del293. Epub 2006 Aug 24.
50 New perspectives on the renal slit diaphragm protein podocin.Mod Pathol. 2011 Aug;24(8):1101-10. doi: 10.1038/modpathol.2011.58. Epub 2011 Apr 15.
51 Mutational screening of the NR5A1 in azoospermia.Andrologia. 2015 May;47(4):395-401. doi: 10.1111/and.12274. Epub 2014 Apr 20.
52 Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia.Hum Mol Genet. 2005 Jan 1;14(1):49-57. doi: 10.1093/hmg/ddi005. Epub 2004 Nov 3.
53 Carnitine/organic cation transporter 2 (OCTN2) contributes to rat epididymal epithelial cell growth and proliferation.Biomed Pharmacother. 2017 Sep;93:444-450. doi: 10.1016/j.biopha.2017.06.057. Epub 2017 Jun 27.
54 Altered PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression in ejaculated spermatozoa of men with impaired sperm characteristics.Asian J Androl. 2018 May-Jun;20(3):260-264. doi: 10.4103/aja.aja_58_17.
55 Two single nucleotide polymorphisms in PRDM9 (MEISETZ) gene may be a genetic risk factor for Japanese patients with azoospermia by meiotic arrest.J Assist Reprod Genet. 2008 Nov-Dec;25(11-12):553-7. doi: 10.1007/s10815-008-9270-x. Epub 2008 Oct 22.
56 Primary Ovarian Insufficiency and Azoospermia in Carriers of a Homozygous PSMC3IP Stop Gain Mutation.J Clin Endocrinol Metab. 2018 Feb 1;103(2):555-563. doi: 10.1210/jc.2017-01966.
57 Associations of single nucleotide polymorphisms in the Pygo2 coding sequence with idiopathic oligospermia and azoospermia.Genet Mol Res. 2015 Aug 7;14(3):9053-61. doi: 10.4238/2015.August.7.14.
58 Single-nucleotide polymorphisms in the human RAD21L gene may be a genetic risk factor for Japanese patients with azoospermia caused by meiotic arrest and Sertoli cell-only syndrome.Hum Fertil (Camb). 2017 Sep;20(3):217-220. doi: 10.1080/14647273.2017.1292004. Epub 2017 Feb 21.
59 RBM5 is a male germ cell splicing factor and is required for spermatid differentiation and male fertility.PLoS Genet. 2013;9(7):e1003628. doi: 10.1371/journal.pgen.1003628. Epub 2013 Jul 25.
60 Deletion of RBM and DAZ in azoospermia: evaluation by PRINS.Am J Med Genet. 2002 Jan 15;107(2):105-8. doi: 10.1002/ajmg.10107.
61 Sequence analysis of 37 candidate genes for male infertility: challenges in variant assessment and validating genes.Andrology. 2020 Mar;8(2):434-441. doi: 10.1111/andr.12704. Epub 2019 Nov 22.
62 Male infertility, impaired spermatogenesis, and azoospermia in mice deficient for the pseudophosphatase Sbf1. J Clin Invest. 2002 May;109(9):1165-72. doi: 10.1172/JCI12589.
63 Single nucleotide polymorphisms in the SEPTIN12 gene may be associated with azoospermia by meiotic arrest in Japanese men.J Assist Reprod Genet. 2012 Jan;29(1):47-51. doi: 10.1007/s10815-011-9679-5. Epub 2011 Nov 25.
64 Disruption of Spermatogenesis and Infertility in Ataxia with Oculomotor Apraxia Type 2 (AOA2).Cerebellum. 2019 Jun;18(3):448-456. doi: 10.1007/s12311-019-01012-w.
65 A single nucleotide polymorphism in SPATA17 may be a genetic risk factor for Japanese patients with meiotic arrest.Asian J Androl. 2009 Sep;11(5):623-8. doi: 10.1038/aja.2009.30. Epub 2009 Jun 1.
66 Developmental expression pattern of a novel gene, TSG23/Tsg23, suggests a role in spermatogenesis.Mol Hum Reprod. 2009 Apr;15(4):223-30. doi: 10.1093/molehr/gap015. Epub 2009 Feb 24.
67 SPINK2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia inhomozygotes.EMBO Mol Med. 2017 Aug;9(8):1132-1149. doi: 10.15252/emmm.201607461.
68 Study of single nucleotide polymorphism (rs28368082) in SPO11 gene and its association with male infertility.J Assist Reprod Genet. 2014 Sep;31(9):1205-10. doi: 10.1007/s10815-014-0279-z. Epub 2014 Jul 9.
69 Localization of the SRY Gene on Chromosome 3 in a Patient with Azoospermia and a Complex Karyotype 45,X/46,X,i(Y)(q10)/46,XX/ 47,XX,i(Y)(q10).Cytogenet Genome Res. 2018;156(3):134-139. doi: 10.1159/000494464. Epub 2018 Nov 23.
70 Genetic variants in meiotic program initiation pathway genes are associated with spermatogenic impairment in a Han Chinese population.PLoS One. 2013;8(1):e53443. doi: 10.1371/journal.pone.0053443. Epub 2013 Jan 8.
71 Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans.Genet Med. 2019 May;21(5):1209-1217. doi: 10.1038/gim.2017.130. Epub 2017 Aug 24.
72 Deficient expression of genes involved in the endogenous defense system against transposons in cryptorchid boys with impaired mini-puberty.Sex Dev. 2011;5(6):287-93. doi: 10.1159/000335188. Epub 2012 Jan 5.
73 Preclinical evaluation of a TEX101 protein ELISA test for the differential diagnosis of male infertility.BMC Med. 2017 Mar 23;15(1):60. doi: 10.1186/s12916-017-0817-5.
74 A novel TEX11 mutation induces azoospermia: a case report of infertile brothers and literature review.BMC Med Genet. 2018 Apr 16;19(1):63. doi: 10.1186/s12881-018-0570-4.
75 Molecular analysis of testis biopsy and semen pellet as complementary methods with histopathological analysis of testis in non-obstructive azoospermia.J Assist Reprod Genet. 2014 Jun;31(6):707-15. doi: 10.1007/s10815-014-0220-5. Epub 2014 Apr 12.
76 Should TSPYL1 mutation screening be included in routine diagnostics of male idiopathic infertility?.Fertil Steril. 2012 Feb;97(2):402-6. doi: 10.1016/j.fertnstert.2011.11.002. Epub 2011 Dec 2.