General Information of Drug Off-Target (DOT) (ID: OTGZA1YR)

DOT Name Fumarylacetoacetase (FAH)
Synonyms FAA; EC 3.7.1.2; Beta-diketonase; Fumarylacetoacetate hydrolase
Gene Name FAH
Related Disease
Methionine adenosyltransferase deficiency ( )
Tyrosinemia type I ( )
Acute liver failure ( )
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Cholestasis ( )
Disorder of methionine catabolism ( )
Fanconi's anemia ( )
Hepatitis B virus infection ( )
Inborn error of metabolism ( )
Liver cancer ( )
Liver failure ( )
Maleylacetoacetate isomerase deficiency ( )
Metabolic disorder ( )
Renal tubule disorder ( )
Seckel syndrome ( )
Sjogren-Larsson syndrome ( )
Thrombophilia ( )
Tyrosinemia type II ( )
Tyrosinemia type III ( )
Hepatocellular carcinoma ( )
Liver cirrhosis ( )
High blood pressure ( )
Colorectal carcinoma ( )
Fanconi anemia complementation group A ( )
Glioblastoma multiforme ( )
Melanoma ( )
Neoplasm ( )
UniProt ID
FAAA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.7.1.2
Pfam ID
PF01557 ; PF09298
Sequence
MSFIPVAEDSDFPIHNLPYGVFSTRGDPRPRIGVAIGDQILDLSIIKHLFTGPVLSKHQD
VFNQPTLNSFMGLGQAAWKEARVFLQNLLSVSQARLRDDTELRKCAFISQASATMHLPAT
IGDYTDFYSSRQHATNVGIMFRDKENALMPNWLHLPVGYHGRASSVVVSGTPIRRPMGQM
KPDDSKPPVYGACKLLDMELEMAFFVGPGNRLGEPIPISKAHEHIFGMVLMNDWSARDIQ
KWEYVPLGPFLGKSFGTTVSPWVVPMDALMPFAVPNPKQDPRPLPYLCHDEPYTFDINLS
VNLKGEGMSQAATICKSNFKYMYWTMLQQLTHHSVNGCNLRPGDLLASGTISGPEPENFG
SMLELSWKGTKPIDLGNGQTRKFLLDGDEVIITGYCQGDGYRIGFGQCAGKVLPALLPS
Tissue Specificity Mainly expressed in liver and kidney. Lower levels are also detected in many other tissues.
KEGG Pathway
Tyrosine metabolism (hsa00350 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Tyrosine catabolism (R-HSA-8963684 )
BioCyc Pathway
MetaCyc:HS02536-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

31 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Methionine adenosyltransferase deficiency DIS4SI69 Definitive Biomarker [1]
Tyrosinemia type I DISP4OS8 Definitive Autosomal recessive [2]
Acute liver failure DIS5EZKX Strong Genetic Variation [3]
Advanced cancer DISAT1Z9 Strong Genetic Variation [4]
Breast cancer DIS7DPX1 Strong Genetic Variation [5]
Breast carcinoma DIS2UE88 Strong Genetic Variation [5]
Carcinoma DISH9F1N Strong Biomarker [3]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Strong Genetic Variation [6]
Cholestasis DISDJJWE Strong Biomarker [7]
Disorder of methionine catabolism DISC7OZE Strong Biomarker [1]
Fanconi's anemia DISGW6Q8 Strong Genetic Variation [5]
Hepatitis B virus infection DISLQ2XY Strong Biomarker [8]
Inborn error of metabolism DISO5FAY Strong Genetic Variation [9]
Liver cancer DISDE4BI Strong Genetic Variation [6]
Liver failure DISLGEL6 Strong Genetic Variation [10]
Maleylacetoacetate isomerase deficiency DIS4JQQ8 Strong Genetic Variation [11]
Metabolic disorder DIS71G5H Strong Genetic Variation [12]
Renal tubule disorder DISAFXMQ Strong Biomarker [13]
Seckel syndrome DISEVUBA Strong Biomarker [14]
Sjogren-Larsson syndrome DISP943Y Strong Biomarker [15]
Thrombophilia DISQR7U7 Strong Biomarker [16]
Tyrosinemia type II DIS4CW3M Strong Biomarker [17]
Tyrosinemia type III DISGH7NN Strong Biomarker [17]
Hepatocellular carcinoma DIS0J828 moderate Genetic Variation [18]
Liver cirrhosis DIS4G1GX moderate Biomarker [19]
High blood pressure DISY2OHH Disputed Biomarker [20]
Colorectal carcinoma DIS5PYL0 Limited Biomarker [21]
Fanconi anemia complementation group A DIS8PZLI Limited Altered Expression [14]
Glioblastoma multiforme DISK8246 Limited Biomarker [22]
Melanoma DIS1RRCY Limited Biomarker [23]
Neoplasm DISZKGEW Limited Biomarker [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 31 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Fumarylacetoacetase (FAH). [25]
------------------------------------------------------------------------------------
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Fumarylacetoacetase (FAH). [26]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Fumarylacetoacetase (FAH). [27]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Fumarylacetoacetase (FAH). [28]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Fumarylacetoacetase (FAH). [29]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Fumarylacetoacetase (FAH). [30]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Fumarylacetoacetase (FAH). [31]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Fumarylacetoacetase (FAH). [32]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Fumarylacetoacetase (FAH). [33]
Triclosan DMZUR4N Approved Triclosan increases the expression of Fumarylacetoacetase (FAH). [34]
Nicotine DMWX5CO Approved Nicotine increases the expression of Fumarylacetoacetase (FAH). [35]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate decreases the expression of Fumarylacetoacetase (FAH). [36]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Fumarylacetoacetase (FAH). [37]
Mifepristone DMGZQEF Approved Mifepristone decreases the expression of Fumarylacetoacetase (FAH). [38]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Fumarylacetoacetase (FAH). [39]
Resveratrol DM3RWXL Phase 3 Resveratrol affects the splicing of Fumarylacetoacetase (FAH). [17]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Fumarylacetoacetase (FAH). [41]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Fumarylacetoacetase (FAH). [42]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Fumarylacetoacetase (FAH). [43]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Fumarylacetoacetase (FAH). [44]
Butanoic acid DMTAJP7 Investigative Butanoic acid affects the splicing of Fumarylacetoacetase (FAH). [17]
5'-(N-ethyl-N-isopropyl)amiloride DM3TPMO Investigative 5'-(N-ethyl-N-isopropyl)amiloride affects the splicing of Fumarylacetoacetase (FAH). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)

References

1 Hypermethioninemias of genetic and non-genetic origin: A review.Am J Med Genet C Semin Med Genet. 2011 Feb 15;157C(1):3-32. doi: 10.1002/ajmg.c.30293. Epub 2011 Feb 9.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Adenovirus-mediated gene therapy in a mouse model of hereditary tyrosinemia type I.Hum Gene Ther. 1997 Mar 20;8(5):513-21. doi: 10.1089/hum.1997.8.5-513.
4 Dendrimer-Based Lipid Nanoparticles Deliver Therapeutic FAH mRNA to Normalize Liver Function and Extend Survival in a Mouse Model of Hepatorenal Tyrosinemia Type I.Adv Mater. 2018 Dec;30(52):e1805308. doi: 10.1002/adma.201805308. Epub 2018 Oct 25.
5 Mutation analysis of the Fanconi anaemia A gene in breast tumours with loss of heterozygosity at 16q24.3.Br J Cancer. 1999 Mar;79(7-8):1049-52. doi: 10.1038/sj.bjc.6690168.
6 Fumarylacetoacetate, the metabolite accumulating in hereditary tyrosinemia, activates the ERK pathway and induces mitotic abnormalities and genomic instability.Hum Mol Genet. 2001 Aug 15;10(17):1741-52. doi: 10.1093/hmg/10.17.1741.
7 Tyrosinaemia type I--de novo mutation in liver tissue suppressing an inborn splicing defect.J Mol Med (Berl). 2005 May;83(5):406-10. doi: 10.1007/s00109-005-0648-2. Epub 2005 Mar 10.
8 Studying HBV Infection and Therapy in Immune-Deficient NOD-Rag1-/-IL2RgammaC-null (NRG) Fumarylacetoacetate Hydrolase (Fah) Knockout Mice Transplanted with Human Hepatocytes.Methods Mol Biol. 2017;1540:267-276. doi: 10.1007/978-1-4939-6700-1_23.
9 Hereditary Tyrosinemia Type 1 in Turkey.Adv Exp Med Biol. 2017;959:157-172. doi: 10.1007/978-3-319-55780-9_15.
10 CRISPR/Cas9-mediated Targeted Integration In Vivo Using a Homology-mediated End Joining-based Strategy.J Vis Exp. 2018 Mar 12;(133):56844. doi: 10.3791/56844.
11 Mildly elevated succinylacetone and normal liver function in compound heterozygotes with pathogenic and pseudodeficient FAH alleles.Mol Genet Metab Rep. 2017 Dec 27;14:55-58. doi: 10.1016/j.ymgmr.2017.12.002. eCollection 2018 Mar.
12 Hereditary tyrosinemia type I-associated mutations in fumarylacetoacetate hydrolase reduce the enzyme stability and increase its aggregation rate.J Biol Chem. 2019 Aug 30;294(35):13051-13060. doi: 10.1074/jbc.RA119.009367. Epub 2019 Jul 12.
13 Two missense mutations causing tyrosinemia type 1 with presence and absence of immunoreactive fumarylacetoacetase.Hum Genet. 1994 Jun;93(6):615-9. doi: 10.1007/BF00201558.
14 Normal expression of the Fanconi anemia proteins FAA and FAC and sensitivity to mitomycin C in two patients with Seckel syndrome.Am J Med Genet. 1999 Apr 23;83(5):388-91. doi: 10.1002/(sici)1096-8628(19990423)83:5<388::aid-ajmg9>3.0.co;2-1.
15 Isolation of animal cell mutants defective in long-chain fatty aldehyde dehydrogenase. Sensitivity to fatty aldehydes and Schiff's base modification of phospholipids: implications for Sj-ogren-Larsson syndrome.J Biol Chem. 1997 Sep 19;272(38):23532-9. doi: 10.1074/jbc.272.38.23532.
16 Dynamic changes of urinary proteins in a rat model of acute hypercoagulable state induced by tranexamic acid.J Cell Physiol. 2019 Jul;234(7):10809-10818. doi: 10.1002/jcp.27904. Epub 2018 Dec 7.
17 Functional analysis and in vitro correction of splicing FAH mutations causing tyrosinemia type I. Clin Genet. 2014 Aug;86(2):167-71. doi: 10.1111/cge.12243. Epub 2013 Aug 21.
18 HBx-K130M/V131I Promotes Liver Cancer in Transgenic Mice via AKT/FOXO1 Signaling Pathway and Arachidonic Acid Metabolism.Mol Cancer Res. 2019 Jul;17(7):1582-1593. doi: 10.1158/1541-7786.MCR-18-1127. Epub 2019 Apr 11.
19 Chronic Phenotype Characterization of a Large-Animal Model of Hereditary Tyrosinemia Type 1.Am J Pathol. 2017 Jan;187(1):33-41. doi: 10.1016/j.ajpath.2016.09.013. Epub 2016 Nov 14.
20 Identification of hypertension-related genes through an integrated genomic-transcriptomic approach.Circ Res. 2005 Apr 1;96(6):617-25. doi: 10.1161/01.RES.0000160556.52369.61. Epub 2005 Feb 24.
21 Reduced capacity for DNA repair synthesis in patients with or genetically predisposed to colorectal cancer.J Natl Cancer Inst. 1983 May;70(5):867-75.
22 Prognostic value of DNA repair genes based on stratification of glioblastomas.Oncotarget. 2017 Apr 27;8(35):58222-58230. doi: 10.18632/oncotarget.17452. eCollection 2017 Aug 29.
23 CDC5L drives FAH expression to promote metabolic reprogramming in melanoma.Oncotarget. 2017 Dec 7;8(69):114328-114343. doi: 10.18632/oncotarget.23107. eCollection 2017 Dec 26.
24 A missense mutation (Q279R) in the fumarylacetoacetate hydrolase gene, responsible for hereditary tyrosinemia, acts as a splicing mutation.BMC Genet. 2001;2:9. doi: 10.1186/1471-2156-2-9. Epub 2001 Jun 29.
25 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
26 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
27 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
28 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
29 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
30 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
31 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
32 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
33 Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells. Autophagy. 2010 Aug;6(6):711-24. doi: 10.4161/auto.6.6.12397. Epub 2010 Aug 17.
34 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
35 Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. PLoS One. 2013 Jun 18;8(6):e67252.
36 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
37 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
38 Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007 Sep;13(9):641-54.
39 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
40 Functional analysis and in vitro correction of splicing FAH mutations causing tyrosinemia type I. Clin Genet. 2014 Aug;86(2):167-71. doi: 10.1111/cge.12243. Epub 2013 Aug 21.
41 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
42 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
43 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
44 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.