General Information of Drug Off-Target (DOT) (ID: OTMTBX6N)

DOT Name Eukaryotic initiation factor 4A-I (EIF4A1)
Synonyms eIF-4A-I; eIF4A-I; EC 3.6.4.13; ATP-dependent RNA helicase eIF4A-1
Gene Name EIF4A1
Related Disease
T-cell acute lymphoblastic leukaemia ( )
Adult lymphoma ( )
Advanced cancer ( )
Alzheimer disease ( )
B-cell lymphoma ( )
B-cell neoplasm ( )
Breast cancer ( )
Breast neoplasm ( )
Cervical cancer ( )
Cervical carcinoma ( )
Chikungunya virus infection ( )
Colonic neoplasm ( )
Colorectal carcinoma ( )
Estrogen-receptor positive breast cancer ( )
Hepatocellular carcinoma ( )
HIV infectious disease ( )
Immunodeficiency ( )
Influenza ( )
Leukemia ( )
Lymphoma ( )
Malignant peripheral nerve sheath tumor ( )
Matthew-Wood syndrome ( )
Pancreatic cancer ( )
Pediatric lymphoma ( )
Carcinoma ( )
Melanoma ( )
Meningioma ( )
Breast carcinoma ( )
Pancreatic ductal carcinoma ( )
Patent ductus arteriosus ( )
Neoplasm ( )
Neurodevelopmental disorder ( )
Non-small-cell lung cancer ( )
Squamous cell carcinoma ( )
UniProt ID
IF4A1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2G9N; 2ZU6; 3EIQ; 5ZBZ; 5ZC9; 6ZMW; 7PPZ; 7PQ0; 8HUJ
EC Number
3.6.4.13
Pfam ID
PF00270 ; PF00271
Sequence
MSASQDSRSRDNGPDGMEPEGVIESNWNEIVDSFDDMNLSESLLRGIYAYGFEKPSAIQQ
RAILPCIKGYDVIAQAQSGTGKTATFAISILQQIELDLKATQALVLAPTRELAQQIQKVV
MALGDYMGASCHACIGGTNVRAEVQKLQMEAPHIIVGTPGRVFDMLNRRYLSPKYIKMFV
LDEADEMLSRGFKDQIYDIFQKLNSNTQVVLLSATMPSDVLEVTKKFMRDPIRILVKKEE
LTLEGIRQFYINVEREEWKLDTLCDLYETLTITQAVIFINTRRKVDWLTEKMHARDFTVS
AMHGDMDQKERDVIMREFRSGSSRVLITTDLLARGIDVQQVSLVINYDLPTNRENYIHRI
GRGGRFGRKGVAINMVTEEDKRTLRDIETFYNTSIEEMPLNVADLI
Function
ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5'-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon.
Reactome Pathway
L13a-mediated translational silencing of Ceruloplasmin expression (R-HSA-156827 )
Deadenylation of mRNA (R-HSA-429947 )
Translation initiation complex formation (R-HSA-72649 )
Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S (R-HSA-72662 )
Ribosomal scanning and start codon recognition (R-HSA-72702 )
GTP hydrolysis and joining of the 60S ribosomal subunit (R-HSA-72706 )
M-decay (R-HSA-9820841 )
Z-decay (R-HSA-9820865 )
ISG15 antiviral mechanism (R-HSA-1169408 )

Molecular Interaction Atlas (MIA) of This DOT

34 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
T-cell acute lymphoblastic leukaemia DIS17AI2 Definitive Biomarker [1]
Adult lymphoma DISK8IZR Strong Biomarker [2]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Alzheimer disease DISF8S70 Strong Biomarker [4]
B-cell lymphoma DISIH1YQ Strong Altered Expression [2]
B-cell neoplasm DISVY326 Strong Biomarker [2]
Breast cancer DIS7DPX1 Strong Biomarker [5]
Breast neoplasm DISNGJLM Strong Altered Expression [6]
Cervical cancer DISFSHPF Strong Biomarker [7]
Cervical carcinoma DIST4S00 Strong Biomarker [7]
Chikungunya virus infection DISDXEHY Strong Biomarker [8]
Colonic neoplasm DISSZ04P Strong Biomarker [9]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [10]
Estrogen-receptor positive breast cancer DIS1H502 Strong Biomarker [6]
Hepatocellular carcinoma DIS0J828 Strong Genetic Variation [11]
HIV infectious disease DISO97HC Strong Biomarker [12]
Immunodeficiency DIS093I0 Strong Biomarker [9]
Influenza DIS3PNU3 Strong Biomarker [13]
Leukemia DISNAKFL Strong Biomarker [14]
Lymphoma DISN6V4S Strong Biomarker [2]
Malignant peripheral nerve sheath tumor DIS0JTN6 Strong Biomarker [15]
Matthew-Wood syndrome DISA7HR7 Strong Biomarker [16]
Pancreatic cancer DISJC981 Strong Biomarker [17]
Pediatric lymphoma DIS51BK2 Strong Biomarker [2]
Carcinoma DISH9F1N moderate Altered Expression [18]
Melanoma DIS1RRCY moderate Biomarker [19]
Meningioma DISPT4TG moderate Biomarker [20]
Breast carcinoma DIS2UE88 Disputed Biomarker [6]
Pancreatic ductal carcinoma DIS26F9Q Disputed Biomarker [21]
Patent ductus arteriosus DIS9P8YS Disputed Biomarker [21]
Neoplasm DISZKGEW Limited Biomarker [22]
Neurodevelopmental disorder DIS372XH Limited Biomarker [23]
Non-small-cell lung cancer DIS5Y6R9 Limited Genetic Variation [24]
Squamous cell carcinoma DISQVIFL Limited Biomarker [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [26]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [28]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [29]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [30]
Quercetin DM3NC4M Approved Quercetin increases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [31]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [33]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [34]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [35]
Menadione DMSJDTY Approved Menadione affects the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [36]
Paclitaxel DMLB81S Approved Paclitaxel decreases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [37]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [34]
Vitamin C DMXJ7O8 Approved Vitamin C decreases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [38]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [39]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [40]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [42]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [43]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [44]
AHPN DM8G6O4 Investigative AHPN decreases the expression of Eukaryotic initiation factor 4A-I (EIF4A1). [45]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the methylation of Eukaryotic initiation factor 4A-I (EIF4A1). [27]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Eukaryotic initiation factor 4A-I (EIF4A1). [41]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the degradation of Eukaryotic initiation factor 4A-I (EIF4A1). [32]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the degradation of Eukaryotic initiation factor 4A-I (EIF4A1). [32]
Paraquat DMR8O3X Investigative Paraquat increases the degradation of Eukaryotic initiation factor 4A-I (EIF4A1). [32]
D-glucose DMMG2TO Investigative D-glucose increases the degradation of Eukaryotic initiation factor 4A-I (EIF4A1). [32]
------------------------------------------------------------------------------------

References

1 RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer.Nature. 2014 Sep 4;513(7516):65-70. doi: 10.1038/nature13485. Epub 2014 Jul 27.
2 Inhibiting CARD11 translation during BCR activation by targeting the eIF4A RNA helicase.Blood. 2014 Dec 11;124(25):3758-67. doi: 10.1182/blood-2014-07-589689. Epub 2014 Oct 15.
3 eIF4A Inhibitors Suppress Cell-Cycle Feedback Response and Acquired Resistance to CDK4/6 Inhibition in Cancer.Mol Cancer Ther. 2019 Nov;18(11):2158-2170. doi: 10.1158/1535-7163.MCT-19-0162. Epub 2019 Aug 8.
4 eIF4A inhibition allows translational regulation of mRNAs encoding proteins involved in Alzheimer's disease.PLoS One. 2010 Sep 28;5(9):e13030. doi: 10.1371/journal.pone.0013030.
5 FGFR1-Activated Translation of WNT Pathway Components with Structured 5' UTRs Is Vulnerable to Inhibition of EIF4A-Dependent Translation Initiation.Cancer Res. 2018 Aug 1;78(15):4229-4240. doi: 10.1158/0008-5472.CAN-18-0631. Epub 2018 May 29.
6 The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape.Cell Death Dis. 2015 Jan 22;6(1):e1603. doi: 10.1038/cddis.2014.542.
7 Downregulation of eukaryotic initiation factor 4A1 improves radiosensitivity by delaying DNA double strand break repair in cervical cancer.Oncol Lett. 2017 Dec;14(6):6976-6982. doi: 10.3892/ol.2017.7040. Epub 2017 Sep 25.
8 Silvestrol Inhibits Chikungunya Virus Replication.Viruses. 2018 Oct 30;10(11):592. doi: 10.3390/v10110592.
9 STAT1 Promotes KRAS Colon Tumor Growth and Susceptibility to Pharmacological Inhibition of Translation Initiation Factor eIF4A.Mol Cancer Ther. 2016 Dec;15(12):3055-3063. doi: 10.1158/1535-7163.MCT-16-0416.
10 miR-133a acts as a tumor suppressor in colorectal cancer by targeting eIF4A1. Tumour Biol. 2017 May;39(5):1010428317698389.
11 Gene expression profile analysis in human hepatocellular carcinoma by cDNA microarray.Mol Cells. 2002 Dec 31;14(3):382-7.
12 Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency.J Virol. 2004 Sep;78(17):9458-73. doi: 10.1128/JVI.78.17.9458-9473.2004.
13 Functional impairment of eIF4A and eIF4G factors correlates with inhibition of influenza virus mRNA translation.Virology. 2011 Apr 25;413(1):93-102. doi: 10.1016/j.virol.2011.02.012. Epub 2011 Mar 5.
14 A novel Bcr-Abl-mTOR-eIF4A axis regulates IRES-mediated translation of LEF-1.Open Biol. 2014 Nov;4(11):140180. doi: 10.1098/rsob.140180.
15 Targeting Protein Translation by Rocaglamide and Didesmethylrocaglamide to Treat MPNST and Other Sarcomas.Mol Cancer Ther. 2020 Mar;19(3):731-741. doi: 10.1158/1535-7163.MCT-19-0809. Epub 2019 Dec 17.
16 eIF4A inhibition circumvents uncontrolled DNA replication mediated by 4E-BP1 loss in pancreatic cancer.JCI Insight. 2019 Nov 1;4(21):e121951. doi: 10.1172/jci.insight.121951.
17 Phosphoglycerate dehydrogenase promotes pancreatic cancer development by interacting with eIF4A1 and eIF4E.J Exp Clin Cancer Res. 2019 Feb 11;38(1):66. doi: 10.1186/s13046-019-1053-y.
18 Key contribution of eIF4H-mediated translational control in tumor promotion.Oncotarget. 2015 Nov 24;6(37):39924-40. doi: 10.18632/oncotarget.5442.
19 Synergistic effects of eIF4A and MEK inhibitors on proliferation of NRAS-mutant melanoma cell lines.Cell Cycle. 2016 Sep 16;15(18):2405-9. doi: 10.1080/15384101.2016.1208862. Epub 2016 Aug 11.
20 Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation.Exp Neurol. 2018 Jan;299(Pt B):299-307. doi: 10.1016/j.expneurol.2017.06.015. Epub 2017 Jun 10.
21 eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma.Nat Commun. 2019 Nov 13;10(1):5151. doi: 10.1038/s41467-019-13086-5.
22 SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination.J Exp Clin Cancer Res. 2019 Feb 13;38(1):76. doi: 10.1186/s13046-019-1069-3.
23 USP9X controls translation efficiency via deubiquitination of eukaryotic translation initiation factor 4A1.Nucleic Acids Res. 2018 Jan 25;46(2):823-839. doi: 10.1093/nar/gkx1226.
24 MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer.Oncogene. 2003 Sep 11;22(39):8031-41. doi: 10.1038/sj.onc.1206928.
25 Aberrant Expression Of PDCD4/eIF4A1 Signal Predicts Postoperative Recurrence For Early-Stage Oral Squamous Cell Carcinoma.Cancer Manag Res. 2019 Nov 11;11:9553-9562. doi: 10.2147/CMAR.S223273. eCollection 2019.
26 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
27 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
28 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
29 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
30 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
31 Differential protein expression of peroxiredoxin I and II by benzo(a)pyrene and quercetin treatment in 22Rv1 and PrEC prostate cell lines. Toxicol Appl Pharmacol. 2007 Apr 15;220(2):197-210. doi: 10.1016/j.taap.2006.12.030. Epub 2007 Jan 9.
32 Targetome analysis of chaperone-mediated autophagy in cancer cells. Autophagy. 2019 Sep;15(9):1558-1571. doi: 10.1080/15548627.2019.1586255. Epub 2019 Mar 20.
33 Inhibition of fatty acid synthase expression by 1alpha,25-dihydroxyvitamin D3 in prostate cancer cells. J Steroid Biochem Mol Biol. 2003 May;85(1):1-8. doi: 10.1016/s0960-0760(03)00142-0.
34 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
35 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
36 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
37 Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells. Gynecol Oncol. 2005 Jul;98(1):45-53. doi: 10.1016/j.ygyno.2005.04.010.
38 Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression. PLoS One. 2009;4(2):e4409.
39 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
40 Expression of endogenous retroviruses reflects increased usage of atypical enhancers in T cells. EMBO J. 2019 Jun 17;38(12):e101107. doi: 10.15252/embj.2018101107. Epub 2019 May 8.
41 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
42 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
43 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
44 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
45 ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: modulation of intracellular calcium homeostasis. Blood. 2004 Jan 1;103(1):194-207.