General Information of Drug Off-Target (DOT) (ID: OTQ9ALTR)

DOT Name Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3)
Synonyms EC 2.4.1.102; EC 2.4.1.148; EC 2.4.1.150; C2GnT-mucin type; C2GnT-M; hC2GnT-M; Core 2/core 4 beta-1,6-N-acetylglucosaminyltransferase; C2/4GnT
Gene Name GCNT3
Related Disease
Melanoma ( )
Colon cancer ( )
Colon carcinoma ( )
Colonic neoplasm ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Epithelial ovarian cancer ( )
Hepatocellular carcinoma ( )
Non-small-cell lung cancer ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Pancreatic cancer ( )
Advanced cancer ( )
Neoplasm ( )
UniProt ID
GCNT3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.4.1.102; 2.4.1.148; 2.4.1.150
Pfam ID
PF02485
Sequence
MVQWKRLCQLHYLWALGCYMLLATVALKLSFRLKCDSDHLGLESRESQSQYCRNILYNFL
KLPAKRSINCSGVTRGDQEAVLQAILNNLEVKKKREPFTDTHYLSLTRDCEHFKAERKFI
QFPLSKEEVEFPIAYSMVIHEKIENFERLLRAVYAPQNIYCVHVDEKSPETFKEAVKAII
SCFPNVFIASKLVRVVYASWSRVQADLNCMEDLLQSSVPWKYFLNTCGTDFPIKSNAEMV
QALKMLNGRNSMESEVPPKHKETRWKYHFEVVRDTLHLTNKKKDPPPYNLTMFTGNAYIV
ASRDFVQHVLKNPKSQQLIEWVKDTYSPDEHLWATLQRARWMPGSVPNHPKYDISDMTSI
ARLVKWQGHEGDIDKGAPYAPCSGIHQRAICVYGAGDLNWMLQNHHLLANKFDPKVDDNA
LQCLEEYLRYKAIYGTEL
Function
Glycosyltransferase that can synthesize all known mucin beta 6 N-acetylglucosaminides. Mediates core 2 and core 4 O-glycan branching, 2 important steps in mucin-type biosynthesis. Has also I-branching enzyme activity by converting linear into branched poly-N-acetyllactosaminoglycans, leading to introduce the blood group I antigen during embryonic development.
Tissue Specificity Primarily expressed in mucus-secreting tissues. Expressed in colon, kidney, small intestine, trachea, and stomach, where mucin is produced.
KEGG Pathway
Mucin type O-glycan biosynthesis (hsa00512 )
Metabolic pathways (hsa01100 )
Reactome Pathway
O-linked glycosylation of mucins (R-HSA-913709 )
BioCyc Pathway
MetaCyc:HS06698-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

14 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Melanoma DIS1RRCY Definitive Altered Expression [1]
Colon cancer DISVC52G Strong Biomarker [2]
Colon carcinoma DISJYKUO Strong Biomarker [2]
Colonic neoplasm DISSZ04P Strong Altered Expression [3]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [4]
Colorectal neoplasm DISR1UCN Strong Altered Expression [3]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [4]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [5]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [6]
Ovarian cancer DISZJHAP Strong Biomarker [4]
Ovarian neoplasm DISEAFTY Strong Biomarker [4]
Pancreatic cancer DISJC981 Strong Biomarker [7]
Advanced cancer DISAT1Z9 moderate Biomarker [8]
Neoplasm DISZKGEW Limited Altered Expression [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
28 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [9]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [10]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [11]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [12]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [13]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [10]
Quercetin DM3NC4M Approved Quercetin affects the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [14]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [15]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [16]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [17]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [18]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [19]
Menadione DMSJDTY Approved Menadione increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [20]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [21]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [22]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [23]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [24]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [24]
Ibuprofen DM8VCBE Approved Ibuprofen increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [24]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [24]
Reserpine DM6VM38 Approved Reserpine increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [22]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [22]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [26]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [27]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [28]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [29]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [30]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 3 (GCNT3). [25]
------------------------------------------------------------------------------------

References

1 -1,3-Galactosyl-O-Glycosyl-Glycoprotein -1,6-N-Acetylglucosaminyltransferase 3 Increases MCAM Stability, Which Enhances S100A8/A9-Mediated Cancer Motility.Oncol Res. 2018 Apr 10;26(3):431-444. doi: 10.3727/096504017X15031557924123. Epub 2017 Sep 18.
2 Clinical relevance of the differential expression of the glycosyltransferase gene GCNT3 in colon cancer.Eur J Cancer. 2015 Jan;51(1):1-8. doi: 10.1016/j.ejca.2014.10.021. Epub 2014 Nov 11.
3 C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells.Oncogene. 2006 Jun 1;25(23):3267-76. doi: 10.1038/sj.onc.1209350. Epub 2006 Jan 16.
4 The role of glycosyltransferase enzyme GCNT3 in colon and ovarian cancer prognosis and chemoresistance.Sci Rep. 2018 May 31;8(1):8485. doi: 10.1038/s41598-018-26468-4.
5 The transcriptional profiling of glycogenes associated with hepatocellular carcinoma metastasis.PLoS One. 2014 Sep 18;9(9):e107941. doi: 10.1371/journal.pone.0107941. eCollection 2014.
6 Downregulation of N-Acetylglucosaminyltransferase GCNT3 by miR-302b-3p Decreases Non-Small Cell Lung Cancer (NSCLC) Cell Proliferation, Migration and Invasion.Cell Physiol Biochem. 2018;50(3):987-1004. doi: 10.1159/000494482. Epub 2018 Oct 24.
7 Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer.PLoS One. 2014 Jun 3;9(6):e98556. doi: 10.1371/journal.pone.0098556. eCollection 2014.
8 Molecular Pathways: Mucins and Drug Delivery in Cancer.Clin Cancer Res. 2017 Mar 15;23(6):1373-1378. doi: 10.1158/1078-0432.CCR-16-0862. Epub 2016 Dec 30.
9 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
10 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
11 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
12 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
13 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
14 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
15 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
16 Aberrantly expressed genes in HaCaT keratinocytes chronically exposed to arsenic trioxide. Biomark Insights. 2011 Feb 8;6:7-16.
17 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
18 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
19 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
20 Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach. Toxicology. 2013 Apr 5;306:24-34.
21 Gene microarray analysis of human renal cell carcinoma: the effects of HDAC inhibition and retinoid treatment. Cancer Biol Ther. 2008 Oct;7(10):1607-18.
22 Oxidative stress mechanisms do not discriminate between genotoxic and nongenotoxic liver carcinogens. Chem Res Toxicol. 2015 Aug 17;28(8):1636-46.
23 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
24 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
25 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
26 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
27 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
28 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
29 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
30 Persistence of epigenomic effects after recovery from repeated treatment with two nephrocarcinogens. Front Genet. 2018 Dec 3;9:558.
31 Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol. 2007 May 15;41(10):3769-74.