General Information of Drug Off-Target (DOT) (ID: OTTZNV6Y)

DOT Name Cysteine-rich motor neuron 1 protein (CRIM1)
Synonyms CRIM-1; Cysteine-rich repeat-containing protein S52
Gene Name CRIM1
Related Disease
Cardiovascular disease ( )
Lung adenocarcinoma ( )
Asthma ( )
Colobomatous macrophthalmia-microcornea syndrome ( )
Advanced cancer ( )
Microphthalmia ( )
Prostate cancer ( )
Prostate carcinoma ( )
UniProt ID
CRIM1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF02822 ; PF19442 ; PF00219 ; PF00093
Sequence
MYLVAGDRGLAGCGHLLVSLLGLLLLLARSGTRALVCLPCDESKCEEPRNCPGSIVQGVC
GCCYTCASQRNESCGGTFGIYGTCDRGLRCVIRPPLNGDSLTEYEAGVCEDENWTDDQLL
GFKPCNENLIAGCNIINGKCECNTIRTCSNPFEFPSQDMCLSALKRIEEEKPDCSKARCE
VQFSPRCPEDSVLIEGYAPPGECCPLPSRCVCNPAGCLRKVCQPGNLNILVSKASGKPGE
CCDLYECKPVFGVDCRTVECPPVQQTACPPDSYETQVRLTADGCCTLPTRCECLSGLCGF
PVCEVGSTPRIVSRGDGTPGKCCDVFECVNDTKPACVFNNVEYYDGDMFRMDNCRFCRCQ
GGVAICFTAQCGEINCERYYVPEGECCPVCEDPVYPFNNPAGCYANGLILAHGDRWREDD
CTFCQCVNGERHCVATVCGQTCTNPVKVPGECCPVCEEPTIITVDPPACGELSNCTLTGK
DCINGFKRDHNGCRTCQCINTEELCSERKQGCTLNCPFGFLTDAQNCEICECRPRPKKCR
PIICDKYCPLGLLKNKHGCDICRCKKCPELSCSKICPLGFQQDSHGCLICKCREASASAG
PPILSGTCLTVDGHHHKNEESWHDGCRECYCLNGREMCALITCPVPACGNPTIHPGQCCP
SCADDFVVQKPELSTPSICHAPGGEYFVEGETWNIDSCTQCTCHSGRVLCETEVCPPLLC
QNPSRTQDSCCPQCTDQPFRPSLSRNNSVPNYCKNDEGDIFLAAESWKPDVCTSCICIDS
VISCFSESCPSVSCERPVLRKGQCCPYCIEDTIPKKVVCHFSGKAYADEERWDLDSCTHC
YCLQGQTLCSTVSCPPLPCVEPINVEGSCCPMCPEMYVPEPTNIPIEKTNHRGEVDLEVP
LWPTPSENDIVHLPRDMGHLQVDYRDNRLHPSEDSSLDSIASVVVPIIICLSIIIAFLFI
NQKKQWIPLLCWYRTPTKPSSLNNQLVSVDCKKGTRVQVDSSQRMLRIAEPDARFSGFYS
MQKQNHLQADNFYQTV
Function
May play a role in CNS development by interacting with growth factors implicated in motor neuron differentiation and survival. May play a role in capillary formation and maintenance during angiogenesis. Modulates BMP activity by affecting its processing and delivery to the cell surface.
Tissue Specificity Expressed in pancreas, kidney, skeletal muscle, lung, placenta, brain, heart, spleen, liver and small intestine. Expressed in blood vessels (at protein level).

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cardiovascular disease DIS2IQDX Strong Biomarker [1]
Lung adenocarcinoma DISD51WR Strong Altered Expression [2]
Asthma DISW9QNS moderate Genetic Variation [3]
Colobomatous macrophthalmia-microcornea syndrome DISFXRK4 Supportive Autosomal dominant [4]
Advanced cancer DISAT1Z9 Limited Altered Expression [5]
Microphthalmia DISGEBES Limited Altered Expression [6]
Prostate cancer DISF190Y Limited Altered Expression [5]
Prostate carcinoma DISMJPLE Limited Altered Expression [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Cysteine-rich motor neuron 1 protein (CRIM1). [7]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Cysteine-rich motor neuron 1 protein (CRIM1). [27]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [8]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [9]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [10]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [11]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [12]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [13]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [14]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [15]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [16]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [17]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [18]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [19]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [20]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [21]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [22]
Lindane DMB8CNL Approved Lindane increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [23]
Prednisolone DMQ8FR2 Approved Prednisolone increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [23]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [24]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [25]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [26]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [28]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Cysteine-rich motor neuron 1 protein (CRIM1). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 CRIM1 is necessary for coronary vascular endothelial cell development and homeostasis.J Mol Histol. 2017 Feb;48(1):53-61. doi: 10.1007/s10735-016-9702-3. Epub 2016 Nov 1.
2 Circular RNA circCRIM1 inhibits invasion and metastasis in lung adenocarcinoma through the microRNA (miR)-182/miR-93-leukemia inhibitory factor receptor pathway.Cancer Sci. 2019 Sep;110(9):2960-2972. doi: 10.1111/cas.14131. Epub 2019 Aug 14.
3 A genome-wide association study of total serum and mite-specific IgEs in asthma patients.PLoS One. 2013 Aug 13;8(8):e71958. doi: 10.1371/journal.pone.0071958. eCollection 2013.
4 CRIM1 haploinsufficiency causes defects in eye development in human and mouse. Hum Mol Genet. 2015 Apr 15;24(8):2267-73. doi: 10.1093/hmg/ddu744. Epub 2015 Jan 5.
5 SOST Inhibits Prostate Cancer Invasion.PLoS One. 2015 Nov 6;10(11):e0142058. doi: 10.1371/journal.pone.0142058. eCollection 2015.
6 Crim1 is required for maintenance of the ocular lens epithelium.Exp Eye Res. 2018 May;170:58-66. doi: 10.1016/j.exer.2018.02.012. Epub 2018 Feb 16.
7 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
8 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
9 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
10 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
11 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
12 Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer. 2014 Apr 23;14:283.
13 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
14 Prenatal arsenic exposure and shifts in the newborn proteome: interindividual differences in tumor necrosis factor (TNF)-responsive signaling. Toxicol Sci. 2014 Jun;139(2):328-37. doi: 10.1093/toxsci/kfu053. Epub 2014 Mar 27.
15 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
16 Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol. 2005 Mar;128(5):636-44.
17 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
18 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
19 Pharmacogenomic identification of novel determinants of response to chemotherapy in colon cancer. Cancer Res. 2006 Mar 1;66(5):2765-77.
20 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
21 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
22 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
23 Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol. 2014 Mar;88(3):673-89.
24 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
25 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
26 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
27 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
28 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
29 Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde. Toxicol Appl Pharmacol. 2009 Sep 15;239(3):273-83.