General Information of Drug Off-Target (DOT) (ID: OT0PF19E)

DOT Name Ryanodine receptor 2 (RYR2)
Synonyms RYR-2; RyR2; hRYR-2; Cardiac muscle ryanodine receptor; Cardiac muscle ryanodine receptor-calcium release channel; Type 2 ryanodine receptor
Gene Name RYR2
Related Disease
Catecholaminergic polymorphic ventricular tachycardia ( )
Catecholaminergic polymorphic ventricular tachycardia 1 ( )
Obsolete arrhythmogenic right ventricular dysplasia 2 ( )
Alzheimer disease ( )
Asthma ( )
Astrocytoma ( )
Atrial fibrillation ( )
Autism ( )
Cardiac disease ( )
Cardiac failure ( )
Cardiovascular disease ( )
Congestive heart failure ( )
Coronary atherosclerosis ( )
Coronary heart disease ( )
Dilated cardiomyopathy ( )
Dilated cardiomyopathy 1A ( )
Epilepsy ( )
Head and neck carcinoma ( )
Head-neck squamous cell carcinoma ( )
High blood pressure ( )
Malignant hyperthermia of anesthesia ( )
Malignant mesothelioma ( )
Melanoma ( )
Myocardial ischemia ( )
Narcolepsy ( )
Polymorphic ventricular tachycardia ( )
Thyroid gland carcinoma ( )
Ventricular fibrillation ( )
Autism spectrum disorder ( )
Catecholaminergic polymorphic ventricular tachycardia 2 ( )
Long QT syndrome ( )
Neoplasm ( )
Ventricular tachycardia ( )
Ventricular tachycardia, familial ( )
Andersen-Tawil syndrome ( )
Brugada syndrome ( )
Cardiomyopathy ( )
Central core myopathy ( )
Hepatocellular carcinoma ( )
Hypertrophic cardiomyopathy ( )
Intellectual disability ( )
Myocardial infarction ( )
Neuroblastoma ( )
Non-insulin dependent diabetes ( )
Obesity ( )
Paroxysmal familial ventricular fibrillation ( )
Type-1/2 diabetes ( )
Arrhythmogenic right ventricular cardiomyopathy ( )
UniProt ID
RYR2_HUMAN
PDB ID
4JKQ; 6Y4O; 6Y4P; 7KL5; 7U9Q; 7U9R; 7U9T; 7U9X; 7U9Z; 7UA1; 7UA3; 7UA4; 7UA5; 7UA9; 8UQ2; 8UQ3; 8UQ4; 8UQ5; 8UXC; 8UXE; 8UXF; 8UXG; 8UXH; 8UXI; 8UXL; 8UXM
Pfam ID
PF13499 ; PF08709 ; PF00520 ; PF02815 ; PF08454 ; PF06459 ; PF01365 ; PF21119 ; PF02026 ; PF00622
Sequence
MADGGEGEDEIQFLRTDDEVVLQCTATIHKEQQKLCLAAEGFGNRLCFLESTSNSKNVPP
DLSICTFVLEQSLSVRALQEMLANTVEKSEGQVDVEKWKFMMKTAQGGGHRTLLYGHAIL
LRHSYSGMYLCCLSTSRSSTDKLAFDVGLQEDTTGEACWWTIHPASKQRSEGEKVRVGDD
LILVSVSSERYLHLSYGNGSLHVDAAFQQTLWSVAPISSGSEAAQGYLIGGDVLRLLHGH
MDECLTVPSGEHGEEQRRTVHYEGGAVSVHARSLWRLETLRVAWSGSHIRWGQPFRLRHV
TTGKYLSLMEDKNLLLMDKEKADVKSTAFTFRSSKEKLDVGVRKEVDGMGTSEIKYGDSV
CYIQHVDTGLWLTYQSVDVKSVRMGSIQRKAIMHHEGHMDDGISLSRSQHEESRTARVIR
STVFLFNRFIRGLDALSKKAKASTVDLPIESVSLSLQDLIGYFHPPDEHLEHEDKQNRLR
ALKNRQNLFQEEGMINLVLECIDRLHVYSSAAHFADVAGREAGESWKSILNSLYELLAAL
IRGNRKNCAQFSGSLDWLISRLERLEASSGILEVLHCVLVESPEALNIIKEGHIKSIISL
LDKHGRNHKVLDVLCSLCVCHGVAVRSNQHLICDNLLPGRDLLLQTRLVNHVSSMRPNIF
LGVSEGSAQYKKWYYELMVDHTEPFVTAEATHLRVGWASTEGYSPYPGGGEEWGGNGVGD
DLFSYGFDGLHLWSGCIARTVSSPNQHLLRTDDVISCCLDLSAPSISFRINGQPVQGMFE
NFNIDGLFFPVVSFSAGIKVRFLLGGRHGEFKFLPPPGYAPCYEAVLPKEKLKVEHSREY
KQERTYTRDLLGPTVSLTQAAFTPIPVDTSQIVLPPHLERIREKLAENIHELWVMNKIEL
GWQYGPVRDDNKRQHPCLVEFSKLPEQERNYNLQMSLETLKTLLALGCHVGISDEHAEDK
VKKMKLPKNYQLTSGYKPAPMDLSFIKLTPSQEAMVDKLAENAHNVWARDRIRQGWTYGI
QQDVKNRRNPRLVPYTLLDDRTKKSNKDSLREAVRTLLGYGYNLEAPDQDHAARAEVCSG
TGERFRIFRAEKTYAVKAGRWYFEFETVTAGDMRVGWSRPGCQPDQELGSDERAFAFDGF
KAQRWHQGNEHYGRSWQAGDVVGCMVDMNEHTMMFTLNGEILLDDSGSELAFKDFDVGDG
FIPVCSLGVAQVGRMNFGKDVSTLKYFTICGLQEGYEPFAVNTNRDITMWLSKRLPQFLQ
VPSNHEHIEVTRIDGTIDSSPCLKVTQKSFGSQNSNTDIMFYRLSMPIECAEVFSKTVAG
GLPGAGLFGPKNDLEDYDADSDFEVLMKTAHGHLVPDRVDKDKEATKPEFNNHKDYAQEK
PSRLKQRFLLRRTKPDYSTSHSARLTEDVLADDRDDYDFLMQTSTYYYSVRIFPGQEPAN
VWVGWITSDFHQYDTGFDLDRVRTVTVTLGDEKGKVHESIKRSNCYMVCAGESMSPGQGR
NNNGLEIGCVVDAASGLLTFIANGKELSTYYQVEPSTKLFPAVFAQATSPNVFQFELGRI
KNVMPLSAGLFKSEHKNPVPQCPPRLHVQFLSHVLWSRMPNQFLKVDVSRISERQGWLVQ
CLDPLQFMSLHIPEENRSVDILELTEQEELLKFHYHTLRLYSAVCALGNHRVAHALCSHV
DEPQLLYAIENKYMPGLLRAGYYDLLIDIHLSSYATARLMMNNEYIVPMTEETKSITLFP
DENKKHGLPGIGLSTSLRPRMQFSSPSFVSISNECYQYSPEFPLDILKSKTIQMLTEAVK
EGSLHARDPVGGTTEFLFVPLIKLFYTLLIMGIFHNEDLKHILQLIEPSVFKEAATPEEE
SDTLEKELSVDDAKLQGAGEEEAKGGKRPKEGLLQMKLPEPVKLQMCLLLQYLCDCQVRH
RIEAIVAFSDDFVAKLQDNQRFRYNEVMQALNMSAALTARKTKEFRSPPQEQINMLLNFK
DDKSECPCPEEIRDQLLDFHEDLMTHCGIELDEDGSLDGNSDLTIRGRLLSLVEKVTYLK
KKQAEKPVESDSKKSSTLQQLISETMVRWAQESVIEDPELVRAMFVLLHRQYDGIGGLVR
ALPKTYTINGVSVEDTINLLASLGQIRSLLSVRMGKEEEKLMIRGLGDIMNNKVFYQHPN
LMRALGMHETVMEVMVNVLGGGESKEITFPKMVANCCRFLCYFCRISRQNQKAMFDHLSY
LLENSSVGLASPAMRGSTPLDVAAASVMDNNELALALREPDLEKVVRYLAGCGLQSCQML
VSKGYPDIGWNPVEGERYLDFLRFAVFCNGESVEENANVVVRLLIRRPECFGPALRGEGG
NGLLAAMEEAIKIAEDPSRDGPSPNSGSSKTLDTEEEEDDTIHMGNAIMTFYSALIDLLG
RCAPEMHLIHAGKGEAIRIRSILRSLIPLGDLVGVISIAFQMPTIAKDGNVVEPDMSAGF
CPDHKAAMVLFLDRVYGIEVQDFLLHLLEVGFLPDLRAAASLDTAALSATDMALALNRYL
CTAVLPLLTRCAPLFAGTEHHASLIDSLLHTVYRLSKGCSLTKAQRDSIEVCLLSICGQL
RPSMMQHLLRRLVFDVPLLNEHAKMPLKLLTNHYERCWKYYCLPGGWGNFGAASEEELHL
SRKLFWGIFDALSQKKYEQELFKLALPCLSAVAGALPPDYMESNYVSMMEKQSSMDSEGN
FNPQPVDTSNITIPEKLEYFINKYAEHSHDKWSMDKLANGWIYGEIYSDSSKVQPLMKPY
KLLSEKEKEIYRWPIKESLKTMLAWGWRIERTREGDSMALYNRTRRISQTSQVSVDAAHG
YSPRAIDMSNVTLSRDLHAMAEMMAENYHNIWAKKKKMELESKGGGNHPLLVPYDTLTAK
EKAKDREKAQDILKFLQINGYAVSRGFKDLELDTPSIEKRFAYSFLQQLIRYVDEAHQYI
LEFDGGSRGKGEHFPYEQEIKFFAKVVLPLIDQYFKNHRLYFLSAASRPLCSGGHASNKE
KEMVTSLFCKLGVLVRHRISLFGNDATSIVNCLHILGQTLDARTVMKTGLESVKSALRAF
LDNAAEDLEKTMENLKQGQFTHTRNQPKGVTQIINYTTVALLPMLSSLFEHIGQHQFGED
LILEDVQVSCYRILTSLYALGTSKSIYVERQRSALGECLAAFAGAFPVAFLETHLDKHNI
YSIYNTKSSRERAALSLPTNVEDVCPNIPSLEKLMEEIVELAESGIRYTQMPHVMEVILP
MLCSYMSRWWEHGPENNPERAEMCCTALNSEHMNTLLGNILKIIYNNLGIDEGAWMKRLA
VFSQPIINKVKPQLLKTHFLPLMEKLKKKAATVVSEEDHLKAEARGDMSEAELLILDEFT
TLARDLYAFYPLLIRFVDYNRAKWLKEPNPEAEELFRMVAEVFIYWSKSHNFKREEQNFV
VQNEINNMSFLITDTKSKMSKAAVSDQERKKMKRKGDRYSMQTSLIVAALKRLLPIGLNI
CAPGDQELIALAKNRFSLKDTEDEVRDIIRSNIHLQGKLEDPAIRWQMALYKDLPNRTDD
TSDPEKTVERVLDIANVLFHLEQKSKRVGRRHYCLVEHPQRSKKAVWHKLLSKQRKRAVV
ACFRMAPLYNLPRHRAVNLFLQGYEKSWIETEEHYFEDKLIEDLAKPGAEPPEEDEGTKR
VDPLHQLILLFSRTALTEKCKLEEDFLYMAYADIMAKSCHDEEDDDGEEEVKSFEEKEME
KQKLLYQQARLHDRGAAEMVLQTISASKGETGPMVAATLKLGIAILNGGNSTVQQKMLDY
LKEKKDVGFFQSLAGLMQSCSVLDLNAFERQNKAEGLGMVTEEGSGEKVLQDDEFTCDLF
RFLQLLCEGHNSDFQNYLRTQTGNNTTVNIIISTVDYLLRVQESISDFYWYYSGKDVIDE
QGQRNFSKAIQVAKQVFNTLTEYIQGPCTGNQQSLAHSRLWDAVVGFLHVFAHMQMKLSQ
DSSQIELLKELMDLQKDMVVMLLSMLEGNVVNGTIGKQMVDMLVESSNNVEMILKFFDMF
LKLKDLTSSDTFKEYDPDGKGVISKRDFHKAMESHKHYTQSETEFLLSCAETDENETLDY
EEFVKRFHEPAKDIGFNVAVLLTNLSEHMPNDTRLQTFLELAESVLNYFQPFLGRIEIMG
SAKRIERVYFEISESSRTQWEKPQVKESKRQFIFDVVNEGGEKEKMELFVNFCEDTIFEM
QLAAQISESDLNERSANKEESEKERPEEQGPRMAFFSILTVRSALFALRYNILTLMRMLS
LKSLKKQMKKVKKMTVKDMVTAFFSSYWSIFMTLLHFVASVFRGFFRIICSLLLGGSLVE
GAKKIKVAELLANMPDPTQDEVRGDGEEGERKPLEAALPSEDLTDLKELTEESDLLSDIF
GLDLKREGGQYKLIPHNPNAGLSDLMSNPVPMPEVQEKFQEQKAKEEEKEEKEETKSEPE
KAEGEDGEKEEKAKEDKGKQKLRQLHTHRYGEPEVPESAFWKKIIAYQQKLLNYFARNFY
NMRMLALFVAFAINFILLFYKVSTSSVVEGKELPTRSSSENAKVTSLDSSSHRIIAVHYV
LEESSGYMEPTLRILAILHTVISFFCIIGYYCLKVPLVIFKREKEVARKLEFDGLYITEQ
PSEDDIKGQWDRLVINTQSFPNNYWDKFVKRKVMDKYGEFYGRDRISELLGMDKAALDFS
DAREKKKPKKDSSLSAVLNSIDVKYQMWKLGVVFTDNSFLYLAWYMTMSVLGHYNNFFFA
AHLLDIAMGFKTLRTILSSVTHNGKQLVLTVGLLAVVVYLYTVVAFNFFRKFYNKSEDGD
TPDMKCDDMLTCYMFHMYVGVRAGGGIGDEIEDPAGDEYEIYRIIFDITFFFFVIVILLA
IIQGLIIDAFGELRDQQEQVKEDMETKCFICGIGNDYFDTVPHGFETHTLQEHNLANYLF
FLMYLINKDETEHTGQESYVWKMYQERCWEFFPAGDCFRKQYEDQLN
Function
Cytosolic calcium-activated calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytosol and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) cytosolic levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development.
Tissue Specificity Detected in heart muscle (at protein level). Heart muscle, brain (cerebellum and hippocampus) and placenta.
KEGG Pathway
Calcium sig.ling pathway (hsa04020 )
cAMP sig.ling pathway (hsa04024 )
Cardiac muscle contraction (hsa04260 )
Adrenergic sig.ling in cardiomyocytes (hsa04261 )
Apelin sig.ling pathway (hsa04371 )
Circadian entrainment (hsa04713 )
Insulin secretion (hsa04911 )
Oxytocin sig.ling pathway (hsa04921 )
Pancreatic secretion (hsa04972 )
Prion disease (hsa05020 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Hypertrophic cardiomyopathy (hsa05410 )
Arrhythmogenic right ventricular cardiomyopathy (hsa05412 )
Dilated cardiomyopathy (hsa05414 )
Diabetic cardiomyopathy (hsa05415 )
Reactome Pathway
Ion homeostasis (R-HSA-5578775 )
Stimuli-sensing channels (R-HSA-2672351 )

Molecular Interaction Atlas (MIA) of This DOT

48 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Catecholaminergic polymorphic ventricular tachycardia DISSAS1A Definitive Autosomal dominant [1]
Catecholaminergic polymorphic ventricular tachycardia 1 DISKGB3F Definitive Autosomal dominant [2]
Obsolete arrhythmogenic right ventricular dysplasia 2 DISRV6TN Definitive Autosomal dominant [3]
Alzheimer disease DISF8S70 Strong Biomarker [4]
Asthma DISW9QNS Strong Genetic Variation [5]
Astrocytoma DISL3V18 Strong Genetic Variation [6]
Atrial fibrillation DIS15W6U Strong Genetic Variation [7]
Autism DISV4V1Z Strong Biomarker [8]
Cardiac disease DISVO1I5 Strong Genetic Variation [9]
Cardiac failure DISDC067 Strong Biomarker [10]
Cardiovascular disease DIS2IQDX Strong Biomarker [11]
Congestive heart failure DIS32MEA Strong Biomarker [10]
Coronary atherosclerosis DISKNDYU Strong Genetic Variation [12]
Coronary heart disease DIS5OIP1 Strong Genetic Variation [12]
Dilated cardiomyopathy DISX608J Strong Genetic Variation [13]
Dilated cardiomyopathy 1A DIS0RK9Z Strong Genetic Variation [13]
Epilepsy DISBB28L Strong Biomarker [9]
Head and neck carcinoma DISOU1DS Strong Posttranslational Modification [14]
Head-neck squamous cell carcinoma DISF7P24 Strong Genetic Variation [14]
High blood pressure DISY2OHH Strong Altered Expression [15]
Malignant hyperthermia of anesthesia DISYC9XI Strong Genetic Variation [16]
Malignant mesothelioma DISTHJGH Strong Biomarker [17]
Melanoma DIS1RRCY Strong Biomarker [18]
Myocardial ischemia DISFTVXF Strong Biomarker [19]
Narcolepsy DISLCNLI Strong Genetic Variation [20]
Polymorphic ventricular tachycardia DISCPO8T Strong Genetic Variation [21]
Thyroid gland carcinoma DISMNGZ0 Strong Altered Expression [22]
Ventricular fibrillation DIS7IN76 Strong Biomarker [23]
Autism spectrum disorder DISXK8NV moderate Genetic Variation [24]
Catecholaminergic polymorphic ventricular tachycardia 2 DIS9AWAE moderate Genetic Variation [25]
Long QT syndrome DISMKWS3 moderate Genetic Variation [26]
Neoplasm DISZKGEW moderate Altered Expression [22]
Ventricular tachycardia DISIBXJ3 moderate Biomarker [27]
Ventricular tachycardia, familial DISYG7IE moderate Biomarker [28]
Andersen-Tawil syndrome DIS3IWZ7 Limited Genetic Variation [29]
Brugada syndrome DISSGN0E Limited Genetic Variation [30]
Cardiomyopathy DISUPZRG Limited Biomarker [31]
Central core myopathy DIS18AZZ Limited Genetic Variation [16]
Hepatocellular carcinoma DIS0J828 Limited Genetic Variation [32]
Hypertrophic cardiomyopathy DISQG2AI Limited Autosomal dominant [1]
Intellectual disability DISMBNXP Limited Genetic Variation [33]
Myocardial infarction DIS655KI Limited Biomarker [34]
Neuroblastoma DISVZBI4 Limited Altered Expression [35]
Non-insulin dependent diabetes DISK1O5Z Limited Biomarker [36]
Obesity DIS47Y1K Limited Biomarker [37]
Paroxysmal familial ventricular fibrillation DISRM7IX Limited Genetic Variation [38]
Type-1/2 diabetes DISIUHAP Limited Altered Expression [39]
Arrhythmogenic right ventricular cardiomyopathy DIS3V2BE Refuted Autosomal dominant [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 48 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cerivastatin DMXCM7H Approved Ryanodine receptor 2 (RYR2) increases the Rhabdomyolysis ADR of Cerivastatin. [52]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Ryanodine receptor 2 (RYR2). [40]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Ryanodine receptor 2 (RYR2). [42]
Isoproterenol DMK7MEY Approved Isoproterenol increases the phosphorylation of Ryanodine receptor 2 (RYR2). [46]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Ryanodine receptor 2 (RYR2). [50]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Ryanodine receptor 2 (RYR2). [41]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Ryanodine receptor 2 (RYR2). [43]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Ryanodine receptor 2 (RYR2). [44]
Etoposide DMNH3PG Approved Etoposide decreases the expression of Ryanodine receptor 2 (RYR2). [45]
Mitoxantrone DMM39BF Approved Mitoxantrone decreases the expression of Ryanodine receptor 2 (RYR2). [41]
Daunorubicin DMQUSBT Approved Daunorubicin decreases the expression of Ryanodine receptor 2 (RYR2). [41]
Carvedilol DMHTEAO Approved Carvedilol increases the activity of Ryanodine receptor 2 (RYR2). [47]
Atenolol DMNKG1Z Approved Atenolol increases the activity of Ryanodine receptor 2 (RYR2). [47]
Metoprolol DMOJ0V6 Approved Metoprolol increases the activity of Ryanodine receptor 2 (RYR2). [47]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Ryanodine receptor 2 (RYR2). [48]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Ryanodine receptor 2 (RYR2). [49]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Ryanodine receptor 2 (RYR2). [51]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Assessment and Validation of a Phenotype-Enhanced Variant Classification Framework to Promote or Demote RYR2 Missense Variants of Uncertain Significance. Circ Genom Precis Med. 2019 May;12(5):e002510. doi: 10.1161/CIRCGEN.119.002510.
3 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
4 N-Acetylcysteine Prevents the Spatial Memory Deficits and the Redox-Dependent RyR2 Decrease Displayed by an Alzheimer's Disease Rat Model.Front Aging Neurosci. 2018 Dec 6;10:399. doi: 10.3389/fnagi.2018.00399. eCollection 2018.
5 Rank-based genome-wide analysis reveals the association of ryanodine receptor-2 gene variants with childhood asthma among human populations.Hum Genomics. 2013 Jul 5;7(1):16. doi: 10.1186/1479-7364-7-16.
6 LPP and RYR2 Gene Polymorphisms Correlate with the Risk and the Prognosis of Astrocytoma.J Mol Neurosci. 2019 Dec;69(4):628-635. doi: 10.1007/s12031-019-01391-z. Epub 2019 Aug 23.
7 Ibrutinib promotes atrial fibrillation by inducing structural remodeling and calcium dysregulation in the atrium.Heart Rhythm. 2019 Sep;16(9):1374-1382. doi: 10.1016/j.hrthm.2019.04.008. Epub 2019 Apr 5.
8 RYR2, PTDSS1 and AREG genes are implicated in a Lebanese population-based study of copy number variation in autism.Sci Rep. 2016 Jan 8;6:19088. doi: 10.1038/srep19088.
9 Unnatural verticilide enantiomer inhibits type 2 ryanodine receptor-mediated calcium leak and is antiarrhythmic.Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4810-4815. doi: 10.1073/pnas.1816685116. Epub 2019 Feb 21.
10 Resiniferatoxin reduces ventricular arrhythmias in heart failure via selectively blunting cardiac sympathetic afferent projection into spinal cord in rats.Eur J Pharmacol. 2020 Jan 15;867:172836. doi: 10.1016/j.ejphar.2019.172836. Epub 2019 Dec 4.
11 A genome-wide association study of carotid atherosclerosis in HIV-infected men.AIDS. 2010 Feb 20;24(4):583-92. doi: 10.1097/QAD.0b013e3283353c9e.
12 Common Variants in TRDN and CALM1 Are Associated with Risk of Sudden Cardiac Death in Chronic Heart Failure Patients in Chinese Han Population.PLoS One. 2015 Jul 21;10(7):e0132459. doi: 10.1371/journal.pone.0132459. eCollection 2015.
13 Exon 3 deletion of RYR2 encoding cardiac ryanodine receptor is associated with left ventricular non-compaction.Europace. 2014 Nov;16(11):1646-54. doi: 10.1093/europace/eut382. Epub 2014 Jan 6.
14 Somatic mutations and promotor methylation of the ryanodine receptor 2 is a common event in the pathogenesis of head and neck cancer.Int J Cancer. 2019 Dec 15;145(12):3299-3310. doi: 10.1002/ijc.32481. Epub 2019 Jun 19.
15 Role of Ryanodine Type 2 Receptors in Elementary Ca(2+) Signaling in Arteries and Vascular Adaptive Responses.J Am Heart Assoc. 2019 May 7;8(9):e010090. doi: 10.1161/JAHA.118.010090.
16 Reduced threshold for store overload-induced Ca(2+) release is a common defect of RyR1 mutations associated with malignant hyperthermia and central core disease.Biochem J. 2017 Aug 7;474(16):2749-2761. doi: 10.1042/BCJ20170282.
17 Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations.Nat Genet. 2016 Apr;48(4):407-16. doi: 10.1038/ng.3520. Epub 2016 Feb 29.
18 Functional genomics of calcium channels in human melanoma cells.Int J Cancer. 2007 Jul 1;121(1):55-65. doi: 10.1002/ijc.22621.
19 Cardioplegia prevents ischemia-induced transcriptional alterations of cytoprotective genes in rat hearts: a DNA microarray study.J Thorac Cardiovasc Surg. 2005 Oct;130(4):1151. doi: 10.1016/j.jtcvs.2005.06.027.
20 Genome-wide association database developed in the Japanese Integrated Database Project.J Hum Genet. 2009 Sep;54(9):543-6. doi: 10.1038/jhg.2009.68. Epub 2009 Jul 24.
21 Short-coupled polymorphic ventricular tachycardia at rest linked to a novel ryanodine receptor (RyR2) mutation: leaky RyR2 channels under non-stress conditions.Int J Cardiol. 2015 Feb 1;180:228-36. doi: 10.1016/j.ijcard.2014.11.119. Epub 2014 Nov 25.
22 Low expression of ryanodine receptor 2 is associated with poor prognosis in thyroid carcinoma.Oncol Lett. 2019 Oct;18(4):3605-3612. doi: 10.3892/ol.2019.10732. Epub 2019 Aug 7.
23 Essential role of ryanodine receptor 2 phosphorylation in the effect of azumolene on ventricular arrhythmia vulnerability in a rabbit heart model.J Cardiovasc Electrophysiol. 2018 Dec;29(12):1707-1715. doi: 10.1111/jce.13737. Epub 2018 Oct 31.
24 Developmental neurogenetics and multimodal neuroimaging of sex differences in autism.Brain Imaging Behav. 2017 Feb;11(1):38-61. doi: 10.1007/s11682-015-9504-3.
25 Functional abnormalities in iPSC-derived cardiomyocytes generated from CPVT1 and CPVT2 patients carrying ryanodine or calsequestrin mutations.J Cell Mol Med. 2015 Aug;19(8):2006-18. doi: 10.1111/jcmm.12581. Epub 2015 Jul 8.
26 Differential Diagnosis Between Catecholaminergic Polymorphic Ventricular Tachycardia and Long QT Syndrome Type 1- Modified Schwartz Score.Circ J. 2018 Aug 24;82(9):2269-2276. doi: 10.1253/circj.CJ-17-1032. Epub 2018 Jun 21.
27 Small-conductance calcium-activated potassium current modulates the ventricular escape rhythm in normal rabbit hearts.Heart Rhythm. 2019 Apr;16(4):615-623. doi: 10.1016/j.hrthm.2018.10.033. Epub 2018 Nov 13.
28 Na+-dependent SR Ca2+ overload induces arrhythmogenic events in mouse cardiomyocytes with a human CPVT mutation.Cardiovasc Res. 2010 Jul 1;87(1):50-9. doi: 10.1093/cvr/cvq007. Epub 2010 Jan 15.
29 Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing.Heart Rhythm. 2006 Jul;3(7):800-5. doi: 10.1016/j.hrthm.2006.03.025. Epub 2006 Mar 28.
30 Channelopathies That Lead to Sudden Cardiac Death: Clinical and Genetic Aspects.Heart Lung Circ. 2019 Jan;28(1):22-30. doi: 10.1016/j.hlc.2018.09.007. Epub 2018 Oct 4.
31 A cryo-EM-based model of phosphorylation- and FKBP12.6-mediated allosterism of the cardiac ryanodine receptor.Sci Signal. 2017 May 23;10(480):eaai8842. doi: 10.1126/scisignal.aai8842.
32 Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling.Nat Commun. 2018 Oct 26;9(1):4490. doi: 10.1038/s41467-018-06931-6.
33 Linking the heart and the brain: Neurodevelopmental disorders in patients with catecholaminergic polymorphic ventricular tachycardia.Heart Rhythm. 2019 Feb;16(2):220-228. doi: 10.1016/j.hrthm.2018.08.025. Epub 2018 Aug 28.
34 Sarcoplasmic reticulum calcium leak contributes to arrhythmia but not to heart failure progression.Sci Transl Med. 2018 Sep 12;10(458):eaan0724. doi: 10.1126/scitranslmed.aan0724.
35 Amyloid production is regulated by 2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor.J Biol Chem. 2017 Jun 16;292(24):10153-10168. doi: 10.1074/jbc.M116.743070. Epub 2017 May 5.
36 Calcium release channel RyR2 regulates insulin release and glucose homeostasis.J Clin Invest. 2015 May;125(5):1968-78. doi: 10.1172/JCI79273. Epub 2015 Apr 6.
37 High-Fat-Diet-Induced Obesity Produces Spontaneous Ventricular Arrhythmias and Increases the Activity of Ryanodine Receptors in Mice.Int J Mol Sci. 2018 Feb 10;19(2):533. doi: 10.3390/ijms19020533.
38 Altered RyR2 regulation by the calmodulin F90L mutation associated with idiopathic ventricular fibrillation and early sudden cardiac death.FEBS Lett. 2014 Aug 25;588(17):2898-902. doi: 10.1016/j.febslet.2014.07.007. Epub 2014 Jul 15.
39 Empagliflozin Attenuates Myocardial Sodium and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats.Int J Mol Sci. 2019 Apr 4;20(7):1680. doi: 10.3390/ijms20071680.
40 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
41 Identification of genomic biomarkers for anthracycline-induced cardiotoxicity in human iPSC-derived cardiomyocytes: an in vitro repeated exposure toxicity approach for safety assessment. Arch Toxicol. 2016 Nov;90(11):2763-2777.
42 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
43 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
44 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
45 Cell death mechanisms of the anti-cancer drug etoposide on human cardiomyocytes isolated from pluripotent stem cells. Arch Toxicol. 2018 Apr;92(4):1507-1524.
46 Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nat Med. 2011 Jul 10;17(8):1003-9. doi: 10.1038/nm.2406.
47 Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation. 2003 May 20;107(19):2459-66. doi: 10.1161/01.CIR.0000068316.53218.49. Epub 2003 May 12.
48 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
49 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
50 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
51 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
52 Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics. 2011 May;21(5):280-8.