General Information of Drug Off-Target (DOT) (ID: OTWB4R1Y)

DOT Name Ankyrin-2 (ANK2)
Synonyms ANK-2; Ankyrin-B; Brain ankyrin; Non-erythroid ankyrin
Gene Name ANK2
Related Disease
Complex neurodevelopmental disorder ( )
Neuroblastoma ( )
Neurodevelopmental disorder ( )
Andersen-Tawil syndrome ( )
Arrhythmia ( )
Atrial fibrillation ( )
Autism ( )
Autism spectrum disorder ( )
Autosomal recessive early-onset Parkinson disease 6 ( )
Beta thalassemia ( )
Cardiac arrhythmia, ankyrin-B-related ( )
Cardiac disease ( )
Cardiac failure ( )
Cardiovascular disease ( )
Congestive heart failure ( )
Epilepsy ( )
Myocardial infarction ( )
Neurodegenerative disease ( )
Obesity ( )
Oligospermia ( )
Parkinson disease ( )
Sinoatrial node disorder ( )
Spinocerebellar ataxia type 5 ( )
Stroke ( )
Venous thromboembolism ( )
Ventricular tachycardia ( )
Acute myelogenous leukaemia ( )
Brugada syndrome ( )
Catecholaminergic polymorphic ventricular tachycardia ( )
Long QT syndrome ( )
Catecholaminergic polymorphic ventricular tachycardia 1 ( )
Heart arrhythmia ( )
Non-insulin dependent diabetes ( )
UniProt ID
ANK2_HUMAN
PDB ID
4D8O; 4RLV; 4RLY; 5Y4D; 5Y4E; 5Y4F; 5YIR; 5YIS; 6KZJ; 6M3Q
Pfam ID
PF00023 ; PF12796 ; PF13637 ; PF00531 ; PF17809 ; PF00791
Sequence
MMNEDAAQKSDSGEKFNGSSQRRKRPKKSDSNASFLRAARAGNLDKVVEYLKGGIDINTC
NQNGLNALHLAAKEGHVGLVQELLGRGSSVDSATKKGNTALHIASLAGQAEVVKVLVKEG
ANINAQSQNGFTPLYMAAQENHIDVVKYLLENGANQSTATEDGFTPLAVALQQGHNQAVA
ILLENDTKGKVRLPALHIAARKDDTKSAALLLQNDHNADVQSKMMVNRTTESGFTPLHIA
AHYGNVNVATLLLNRGAAVDFTARNGITPLHVASKRGNTNMVKLLLDRGGQIDAKTRDGL
TPLHCAARSGHDQVVELLLERGAPLLARTKNGLSPLHMAAQGDHVECVKHLLQHKAPVDD
VTLDYLTALHVAAHCGHYRVTKLLLDKRANPNARALNGFTPLHIACKKNRIKVMELLVKY
GASIQAITESGLTPIHVAAFMGHLNIVLLLLQNGASPDVTNIRGETALHMAARAGQVEVV
RCLLRNGALVDARAREEQTPLHIASRLGKTEIVQLLLQHMAHPDAATTNGYTPLHISARE
GQVDVASVLLEAGAAHSLATKKGFTPLHVAAKYGSLDVAKLLLQRRAAADSAGKNGLTPL
HVAAHYDNQKVALLLLEKGASPHATAKNGYTPLHIAAKKNQMQIASTLLNYGAETNIVTK
QGVTPLHLASQEGHTDMVTLLLDKGANIHMSTKSGLTSLHLAAQEDKVNVADILTKHGAD
QDAHTKLGYTPLIVACHYGNVKMVNFLLKQGANVNAKTKNGYTPLHQAAQQGHTHIINVL
LQHGAKPNATTANGNTALAIAKRLGYISVVDTLKVVTEEVTTTTTTITEKHKLNVPETMT
EVLDVSDEEGDDTMTGDGGEYLRPEDLKELGDDSLPSSQFLDGMNYLRYSLEGGRSDSLR
SFSSDRSHTLSHASYLRDSAVMDDSVVIPSHQVSTLAKEAERNSYRLSWGTENLDNVALS
SSPIHSGFLVSFMVDARGGAMRGCRHNGLRIIIPPRKCTAPTRVTCRLVKRHRLATMPPM
VEGEGLASRLIEVGPSGAQFLGKLHLPTAPPPLNEGESLVSRILQLGPPGTKFLGPVIVE
IPHFAALRGKERELVVLRSENGDSWKEHFCDYTEDELNEILNGMDEVLDSPEDLEKKRIC
RIITRDFPQYFAVVSRIKQDSNLIGPEGGVLSSTVVPQVQAVFPEGALTKRIRVGLQAQP
MHSELVKKILGNKATFSPIVTLEPRRRKFHKPITMTIPVPKASSDVMLNGFGGDAPTLRL
LCSITGGTTPAQWEDITGTTPLTFVNECVSFTTNVSARFWLIDCRQIQESVTFASQVYRE
IICVPYMAKFVVFAKSHDPIEARLRCFCMTDDKVDKTLEQQENFAEVARSRDVEVLEGKP
IYVDCFGNLVPLTKSGQHHIFSFFAFKENRLPLFVKVRDTTQEPCGRLSFMKEPKSTRGL
VHQAICNLNITLPIYTKESESDQEQEEEIDMTSEKNDETESTETSVLKSHLVNEVPVLAS
PDLLSEVSEMKQDLIKMTAILTTDVSDKAGSIKVKELVKAAEEEPGEPFEIVERVKEDLE
KVNEILRSGTCTRDESSVQSSRSERGLVEEEWVIVSDEEIEEARQKAPLEITEYPCVEVR
IDKEIKGKVEKDSTGLVNYLTDDLNTCVPLPKEQLQTVQDKAGKKCEALAVGRSSEKEGK
DIPPDETQSTQKQHKPSLGIKKPVRRKLKEKQKQKEEGLQASAEKAELKKGSSEESLGED
PGLAPEPLPTVKATSPLIEETPIGSIKDKVKALQKRVEDEQKGRSKLPIRVKGKEDVPKK
TTHRPHPAASPSLKSERHAPGSPSPKTERHSTLSSSAKTERHPPVSPSSKTEKHSPVSPS
AKTERHSPASSSSKTEKHSPVSPSTKTERHSPVSSTKTERHPPVSPSGKTDKRPPVSPSG
RTEKHPPVSPGRTEKRLPVSPSGRTDKHQPVSTAGKTEKHLPVSPSGKTEKQPPVSPTSK
TERIEETMSVRELMKAFQSGQDPSKHKTGLFEHKSAKQKQPQEKGKVRVEKEKGPILTQR
EAQKTENQTIKRGQRLPVTGTAESKRGVRVSSIGVKKEDAAGGKEKVLSHKIPEPVQSVP
EEESHRESEVPKEKMADEQGDMDLQISPDRKTSTDFSEVIKQELEDNDKYQQFRLSEETE
KAQLHLDQVLTSPFNTTFPLDYMKDEFLPALSLQSGALDGSSESLKNEGVAGSPCGSLME
GTPQISSEESYKHEGLAETPETSPESLSFSPKKSEEQTGETKESTKTETTTEIRSEKEHP
TTKDITGGSEERGATVTEDSETSTESFQKEATLGSPKDTSPKRQDDCTGSCSVALAKETP
TGLTEEAACDEGQRTFGSSAHKTQTDSEVQESTATSDETKALPLPEASVKTDTGTESKPQ
GVIRSPQGLELALPSRDSEVLSAVADDSLAVSHKDSLEASPVLEDNSSHKTPDSLEPSPL
KESPCRDSLESSPVEPKMKAGIFPSHFPLPAAVAKTELLTEVASVRSRLLRDPDGSAEDD
SLEQTSLMESSGKSPLSPDTPSSEEVSYEVTPKTTDVSTPKPAVIHECAEEDDSENGEKK
RFTPEEEMFKMVTKIKMFDELEQEAKQKRDYKKEPKQEESSSSSDPDADCSVDVDEPKHT
GSGEDESGVPVLVTSESRKVSSSSESEPELAQLKKGADSGLLPEPVIRVQPPSPLPSSMD
SNSSPEEVQFQPVVSKQYTFKMNEDTQEEPGKSEEEKDSESHLAEDRHAVSTEAEDRSYD
KLNRDTDQPKICDGHGCEAMSPSSSAAPVSSGLQSPTGDDVDEQPVIYKESLALQGTHEK
DTEGEELDVSRAESPQADCPSESFSSSSSLPHCLVSEGKELDEDISATSSIQKTEVTKTD
ETFENLPKDCPSQDSSITTQTDRFSMDVPVSDLAENDEIYDPQITSPYENVPSQSFFSSE
ESKTQTDANHTTSFHSSEVYSVTITSPVEDVVVASSSSGTVLSKESNFEGQDIKMESQQE
STLWEMQSDSVSSSFEPTMSATTTVVGEQISKVIITKTDVDSDSWSEIREDDEAFEARVK
EEEQKIFGLMVDRQSQGTTPDTTPARTPTEEGTPTSEQNPFLFQEGKLFEMTRSGAIDMT
KRSYADESFHFFQIGQESREETLSEDVKEGATGADPLPLETSAESLALSESKETVDDEAD
LLPDDVSEEVEEIPASDAQLNSQMGISASTETPTKEAVSVGTKDLPTVQTGDIPPLSGVK
QISCPDSSEPAVQVQLDFSTLTRSVYSDRGDDSPDSSPEEQKSVIEIPTAPMENVPFTES
KSKIPVRTMPTSTPAPPSAEYESSVSEDFLSSVDEENKADEAKPKSKLPVKVPLQRVEQQ
LSDLDTSVQKTVAPQGQDMASIAPDNRSKSESDASSLDSKTKCPVKTRSYTETETESRER
AEELELESEEGATRPKILTSRLPVKSRSTTSSCRGGTSPTKESKEHFFDLYRNSIEFFEE
ISDEASKLVDRLTQSEREQEIVSDDESSSALEVSVIENLPPVETEHSVPEDIFDTRPIWD
ESIETLIERIPDENGHDHAEDPQDEQERIEERLAYIADHLGFSWTELARELDFTEEQIHQ
IRIENPNSLQDQSHALLKYWLERDGKHATDTNLVECLTKINRMDIVHLMETNTEPLQERI
SHSYAEIEQTITLDHSEGFSVLQEELCTAQHKQKEEQAVSKESETCDHPPIVSEEDISVG
YSTFQDGVPKTEGDSSATALFPQTHKEQVQQDFSGKMQDLPEESSLEYQQEYFVTTPGTE
TSETQKAMIVPSSPSKTPEEVSTPAEEEKLYLQTPTSSERGGSPIIQEPEEPSEHREESS
PRKTSLVIVESADNQPETCERLDEDAAFEKGDDMPEIPPETVTEEEYIDEHGHTVVKKVT
RKIIRRYVSSEGTEKEEIMVQGMPQEPVNIEEGDGYSKVIKRVVLKSDTEQSEDNNE
Function
Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate. In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration.
Tissue Specificity
Present in plasma membrane of neurons as well as glial cells throughout the brain. Expressed in fetal brain and in temporal cortex of adult brain. Also expressed in the inner segments of rod photoreceptors in retina.
KEGG Pathway
Cytoskeleton in muscle cells (hsa04820 )
Proteoglycans in cancer (hsa05205 )
Reactome Pathway
COPI-mediated anterograde transport (R-HSA-6807878 )
Interaction between L1 and Ankyrins (R-HSA-445095 )

Molecular Interaction Atlas (MIA) of This DOT

33 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Complex neurodevelopmental disorder DISB9AFI Definitive Autosomal dominant [1]
Neuroblastoma DISVZBI4 Definitive Altered Expression [2]
Neurodevelopmental disorder DIS372XH Definitive Biomarker [3]
Andersen-Tawil syndrome DIS3IWZ7 Strong Biomarker [4]
Arrhythmia DISFF2NI Strong Biomarker [5]
Atrial fibrillation DIS15W6U Strong Biomarker [6]
Autism DISV4V1Z Strong Genetic Variation [7]
Autism spectrum disorder DISXK8NV Strong Genetic Variation [7]
Autosomal recessive early-onset Parkinson disease 6 DISHVLD5 Strong Biomarker [8]
Beta thalassemia DIS5RCQK Strong Genetic Variation [9]
Cardiac arrhythmia, ankyrin-B-related DISGGN33 Strong Autosomal dominant [10]
Cardiac disease DISVO1I5 Strong Genetic Variation [11]
Cardiac failure DISDC067 Strong Altered Expression [12]
Cardiovascular disease DIS2IQDX Strong Biomarker [13]
Congestive heart failure DIS32MEA Strong Altered Expression [12]
Epilepsy DISBB28L Strong Biomarker [14]
Myocardial infarction DIS655KI Strong Biomarker [15]
Neurodegenerative disease DISM20FF Strong Biomarker [16]
Obesity DIS47Y1K Strong Biomarker [17]
Oligospermia DIS6YJF3 Strong Posttranslational Modification [18]
Parkinson disease DISQVHKL Strong Biomarker [8]
Sinoatrial node disorder DISYJI6J Strong Genetic Variation [19]
Spinocerebellar ataxia type 5 DISPYXJ0 Strong Biomarker [20]
Stroke DISX6UHX Strong Biomarker [21]
Venous thromboembolism DISUR7CR Strong Genetic Variation [22]
Ventricular tachycardia DISIBXJ3 Strong Genetic Variation [23]
Acute myelogenous leukaemia DISCSPTN moderate Genetic Variation [24]
Brugada syndrome DISSGN0E Disputed Autosomal dominant [1]
Catecholaminergic polymorphic ventricular tachycardia DISSAS1A Disputed Autosomal dominant [1]
Long QT syndrome DISMKWS3 Disputed Autosomal dominant [1]
Catecholaminergic polymorphic ventricular tachycardia 1 DISKGB3F Limited Genetic Variation [13]
Heart arrhythmia DISLKUNL Limited Autosomal dominant [25]
Non-insulin dependent diabetes DISK1O5Z Limited Genetic Variation [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Temozolomide DMKECZD Approved Ankyrin-2 (ANK2) affects the response to substance of Temozolomide. [49]
DTI-015 DMXZRW0 Approved Ankyrin-2 (ANK2) affects the response to substance of DTI-015. [49]
Lovastatin DM9OZWQ Approved Ankyrin-2 (ANK2) decreases the response to substance of Lovastatin. [50]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Ankyrin-2 (ANK2). [27]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Ankyrin-2 (ANK2). [28]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Ankyrin-2 (ANK2). [29]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Ankyrin-2 (ANK2). [30]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Ankyrin-2 (ANK2). [31]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Ankyrin-2 (ANK2). [32]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Ankyrin-2 (ANK2). [33]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Ankyrin-2 (ANK2). [35]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Ankyrin-2 (ANK2). [36]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Ankyrin-2 (ANK2). [37]
Phenobarbital DMXZOCG Approved Phenobarbital increases the expression of Ankyrin-2 (ANK2). [38]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Ankyrin-2 (ANK2). [39]
Mitoxantrone DMM39BF Approved Mitoxantrone decreases the expression of Ankyrin-2 (ANK2). [31]
Daunorubicin DMQUSBT Approved Daunorubicin decreases the expression of Ankyrin-2 (ANK2). [31]
Beta-carotene DM0RXBT Approved Beta-carotene increases the expression of Ankyrin-2 (ANK2). [40]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Ankyrin-2 (ANK2). [41]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Ankyrin-2 (ANK2). [42]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Ankyrin-2 (ANK2). [43]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Ankyrin-2 (ANK2). [45]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Ankyrin-2 (ANK2). [46]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Ankyrin-2 (ANK2). [47]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Ankyrin-2 (ANK2). [48]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Ankyrin-2 (ANK2). [34]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Ankyrin-2 (ANK2). [44]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 AlphaII-spectrin participates in the surface expression of cell adhesion molecule L1 and neurite outgrowth.Exp Cell Res. 2014 Apr 1;322(2):365-80. doi: 10.1016/j.yexcr.2014.01.012. Epub 2014 Jan 24.
3 Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017 Apr;49(4):515-526. doi: 10.1038/ng.3792. Epub 2017 Feb 13.
4 Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing.Heart Rhythm. 2006 Jul;3(7):800-5. doi: 10.1016/j.hrthm.2006.03.025. Epub 2006 Mar 28.
5 Na(+) microdomains and sparks: Role in cardiac excitation-contraction coupling and arrhythmias in ankyrin-B deficiency.J Mol Cell Cardiol. 2019 Mar;128:145-157. doi: 10.1016/j.yjmcc.2019.02.001. Epub 2019 Feb 5.
6 MicroRNA?4a mediates atrial fibrillation through regulation of AnkyrinB expression.Mol Med Rep. 2018 Jun;17(6):8457-8465. doi: 10.3892/mmr.2018.8873. Epub 2018 Apr 12.
7 ANK2 autism mutation targeting giant ankyrin-B promotes axon branching and ectopic connectivity.Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15262-15271. doi: 10.1073/pnas.1904348116. Epub 2019 Jul 8.
8 SerThr-PhosphoProteome of Brain from Aged PINK1-KO+A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes.Int J Mol Sci. 2019 Jul 4;20(13):3284. doi: 10.3390/ijms20133284.
9 Analysis of erythrocyte and platelet membrane proteins in various forms of beta-thalassemia.Biochemistry (Mosc). 2004 Jul;69(7):748-53. doi: 10.1023/b:biry.0000040198.62939.56.
10 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
11 Exon organization and novel alternative splicing of the human ANK2 gene: implications for cardiac function and human cardiac disease.J Mol Cell Cardiol. 2008 Dec;45(6):724-34. doi: 10.1016/j.yjmcc.2008.08.005. Epub 2008 Aug 27.
12 Ankyrin-B protein in heart failure: identification of a new component of metazoan cardioprotection.J Biol Chem. 2012 Aug 31;287(36):30268-81. doi: 10.1074/jbc.M112.368415. Epub 2012 Jul 9.
13 The evolving role of ankyrin-B in cardiovascular disease.Heart Rhythm. 2017 Dec;14(12):1884-1889. doi: 10.1016/j.hrthm.2017.07.032. Epub 2017 Jul 29.
14 Familial autosomal dominant reflex epilepsy triggered by hot water maps to 4q24-q28.Hum Genet. 2009 Nov;126(5):677-83. doi: 10.1007/s00439-009-0718-6. Epub 2009 Jul 14.
15 Cardiac ankyrins in health and disease.J Mol Cell Cardiol. 2009 Aug;47(2):203-9. doi: 10.1016/j.yjmcc.2009.04.010. Epub 2009 Apr 24.
16 Selective disappearance of an axonal protein, 440-kDa ankyrinB, associated with neuronal degeneration induced by methylmercury.J Neurosci Res. 2003 Sep 15;73(6):831-9. doi: 10.1002/jnr.10715.
17 Cell-autonomous adiposity through increased cell surface GLUT4 due to ankyrin-B deficiency.Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12743-12748. doi: 10.1073/pnas.1708865114. Epub 2017 Nov 13.
18 Spermatozoa from infertile patients exhibit differences of DNA methylation associated with spermatogenesis-related processes: an array-based analysis.Reprod Biomed Online. 2016 Dec;33(6):709-719. doi: 10.1016/j.rbmo.2016.09.001. Epub 2016 Sep 15.
19 A Novel Mechanism for Human Cardiac Ankyrin-B Syndrome due to Reciprocal Chromosomal Translocation.Heart Lung Circ. 2017 Jun;26(6):612-618. doi: 10.1016/j.hlc.2016.09.013. Epub 2016 Nov 16.
20 -III-spectrin spinocerebellar ataxia type 5 mutation reveals a dominant cytoskeletal mechanism that underlies dendritic arborization.Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9376-E9385. doi: 10.1073/pnas.1707108114. Epub 2017 Oct 16.
21 Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes.Nat Genet. 2018 Apr;50(4):524-537. doi: 10.1038/s41588-018-0058-3. Epub 2018 Mar 12.
22 Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism.Blood. 2019 Nov 7;134(19):1645-1657. doi: 10.1182/blood.2019000435.
23 Ankyrin-B Q1283H Variant Linked to Arrhythmias Via Loss of Local Protein Phosphatase 2A Activity Causes Ryanodine Receptor Hyperphosphorylation.Circulation. 2018 Dec 4;138(23):2682-2697. doi: 10.1161/CIRCULATIONAHA.118.034541.
24 Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia.Oncotarget. 2017 Jan 31;8(5):7891-7899. doi: 10.18632/oncotarget.13631.
25 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
26 Ankyrin-B metabolic syndrome combines age-dependent adiposity with pancreatic cell insufficiency.J Clin Invest. 2015 Aug 3;125(8):3087-102. doi: 10.1172/JCI81317. Epub 2015 Jul 13.
27 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
28 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
29 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
30 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
31 Identification of genomic biomarkers for anthracycline-induced cardiotoxicity in human iPSC-derived cardiomyocytes: an in vitro repeated exposure toxicity approach for safety assessment. Arch Toxicol. 2016 Nov;90(11):2763-2777.
32 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
33 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
34 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
35 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
36 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
37 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
38 Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol. 2009 Feb 1;234(3):345-60.
39 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
40 Beta-carotene and apocarotenals promote retinoid signaling in BEAS-2B human bronchioepithelial cells. Arch Biochem Biophys. 2006 Nov 1;455(1):48-60.
41 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
42 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
43 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
44 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
45 Bisphenolic compounds alter gene expression in MCF-7 cells through interaction with estrogen receptor . Toxicol Appl Pharmacol. 2020 Jul 15;399:115030. doi: 10.1016/j.taap.2020.115030. Epub 2020 May 6.
46 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
47 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
48 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
49 Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006 Jan 10;24(2):274-87. doi: 10.1200/JCO.2005.02.9405. Epub 2005 Dec 19.
50 NCI60 cancer cell line panel data and RNAi analysis help identify EAF2 as a modulator of simvastatin and lovastatin response in HCT-116 cells. PLoS One. 2011 Apr 4;6(4):e18306. doi: 10.1371/journal.pone.0018306.