General Information of Drug Off-Target (DOT) (ID: OTA4P0FC)

DOT Name Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM)
Synonyms MCAD; EC 1.3.8.7; Medium chain acyl-CoA dehydrogenase; MCADH
Gene Name ACADM
Related Disease
Medium chain acyl-CoA dehydrogenase deficiency ( )
Acute liver failure ( )
Breast cancer ( )
Breast carcinoma ( )
Cardiac failure ( )
Colorectal carcinoma ( )
Congestive heart failure ( )
Disorder of glycogen metabolism ( )
Inherited fatty acid metabolism disorder ( )
Liver failure ( )
Long QT syndrome ( )
Metabolic disorder ( )
Obesity ( )
Psoriatic arthritis ( )
Hypoglycemia ( )
Inborn error of metabolism ( )
Clear cell renal carcinoma ( )
Neuroblastoma ( )
Phenylketonuria ( )
Systemic primary carnitine deficiency disease ( )
UniProt ID
ACADM_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1EGC; 1EGD; 1EGE; 1T9G; 2A1T; 4P13
EC Number
1.3.8.7
Pfam ID
PF00441 ; PF02770 ; PF02771
Sequence
MAAGFGRCCRVLRSISRFHWRSQHTKANRQREPGLGFSFEFTEQQKEFQATARKFAREEI
IPVAAEYDKTGEYPVPLIRRAWELGLMNTHIPENCGGLGLGTFDACLISEELAYGCTGVQ
TAIEGNSLGQMPIIIAGNDQQKKKYLGRMTEEPLMCAYCVTEPGAGSDVAGIKTKAEKKG
DEYIINGQKMWITNGGKANWYFLLARSDPDPKAPANKAFTGFIVEADTPGIQIGRKELNM
GQRCSDTRGIVFEDVKVPKENVLIGDGAGFKVAMGAFDKTRPVVAAGAVGLAQRALDEAT
KYALERKTFGKLLVEHQAISFMLAEMAMKVELARMSYQRAAWEVDSGRRNTYYASIAKAF
AGDIANQLATDAVQILGGNGFNTEYPVEKLMRDAKIYQIYEGTSQIQRLIVAREHIDKYK
N
Function
Medium-chain specific acyl-CoA dehydrogenase is one of the acyl-CoA dehydrogenases that catalyze the first step of mitochondrial fatty acid beta-oxidation, an aerobic process breaking down fatty acids into acetyl-CoA and allowing the production of energy from fats. The first step of fatty acid beta-oxidation consists in the removal of one hydrogen from C-2 and C-3 of the straight-chain fatty acyl-CoA thioester, resulting in the formation of trans-2-enoyl-CoA. Electron transfer flavoprotein (ETF) is the electron acceptor that transfers electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase). Among the different mitochondrial acyl-CoA dehydrogenases, medium-chain specific acyl-CoA dehydrogenase acts specifically on acyl-CoAs with saturated 6 to 12 carbons long primary chains.
KEGG Pathway
Fatty acid degradation (hsa00071 )
Valine, leucine and isoleucine degradation (hsa00280 )
Metabolic pathways (hsa01100 )
Fatty acid metabolism (hsa01212 )
PPAR sig.ling pathway (hsa03320 )
Alcoholic liver disease (hsa04936 )
Reactome Pathway
mitochondrial fatty acid beta-oxidation of unsaturated fatty acids (R-HSA-77288 )
Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA (R-HSA-77346 )
Beta oxidation of octanoyl-CoA to hexanoyl-CoA (R-HSA-77348 )
PPARA activates gene expression (R-HSA-1989781 )
BioCyc Pathway
MetaCyc:HS04089-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

20 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Medium chain acyl-CoA dehydrogenase deficiency DISB8C4K Definitive Autosomal recessive [1]
Acute liver failure DIS5EZKX Strong Genetic Variation [2]
Breast cancer DIS7DPX1 Strong Altered Expression [3]
Breast carcinoma DIS2UE88 Strong Altered Expression [3]
Cardiac failure DISDC067 Strong Altered Expression [4]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [5]
Congestive heart failure DIS32MEA Strong Altered Expression [6]
Disorder of glycogen metabolism DISYGNOB Strong Biomarker [7]
Inherited fatty acid metabolism disorder DISOT51Y Strong Genetic Variation [8]
Liver failure DISLGEL6 Strong Biomarker [9]
Long QT syndrome DISMKWS3 Strong Biomarker [10]
Metabolic disorder DIS71G5H Strong Biomarker [11]
Obesity DIS47Y1K Strong Biomarker [12]
Psoriatic arthritis DISLWTG2 Strong Genetic Variation [13]
Hypoglycemia DISRCKR7 moderate Genetic Variation [14]
Inborn error of metabolism DISO5FAY moderate Genetic Variation [15]
Clear cell renal carcinoma DISBXRFJ Limited Biomarker [16]
Neuroblastoma DISVZBI4 Limited Biomarker [17]
Phenylketonuria DISCU56J Limited Biomarker [18]
Systemic primary carnitine deficiency disease DIS9OPZ4 Limited Genetic Variation [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM) increases the response to substance of Valproate. [9]
Etoposide DMNH3PG Approved Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM) affects the response to substance of Etoposide. [41]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [20]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [21]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [22]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [23]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [24]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [25]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [26]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [27]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [28]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [29]
Aspirin DM672AH Approved Aspirin increases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [30]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [31]
Lindane DMB8CNL Approved Lindane decreases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [32]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [33]
Seocalcitol DMKL9QO Phase 3 Seocalcitol increases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [34]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [36]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [37]
Nickel chloride DMI12Y8 Investigative Nickel chloride decreases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [38]
(E)-4-(3,5-dimethoxystyryl)phenol DMYXI2V Investigative (E)-4-(3,5-dimethoxystyryl)phenol increases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [33]
GW7647 DM9RD0C Investigative GW7647 increases the expression of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM). [35]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Acute liver failure in pregnancy associated with maternal MCAD deficiency.J Inherit Metab Dis. 2007 Feb;30(1):103. doi: 10.1007/s10545-006-0520-8. Epub 2006 Dec 20.
3 Caspase-1 cleaves PPAR for potentiating the pro-tumor action of TAMs.Nat Commun. 2017 Oct 3;8(1):766. doi: 10.1038/s41467-017-00523-6.
4 The energy substrate switch during development of heart failure: gene regulatory mechanisms (Review).Int J Mol Med. 1998 Jan;1(1):17-24. doi: 10.3892/ijmm.1.1.17.
5 Integrated transcriptomic analysis of distance-related field cancerization in rectal cancer patients.Oncotarget. 2017 May 15;8(37):61107-61117. doi: 10.18632/oncotarget.17864. eCollection 2017 Sep 22.
6 Astragaloside IV inhibits ventricular remodeling and improves fatty acid utilization in rats with chronic heart failure.Biosci Rep. 2018 May 22;38(3):BSR20171036. doi: 10.1042/BSR20171036. Print 2018 May 29.
7 Inherent lipid metabolic dysfunction in glycogen storage disease IIIa.Biochem Biophys Res Commun. 2014 Dec 5;455(1-2):90-7. doi: 10.1016/j.bbrc.2014.10.096.
8 Functional effects of different medium-chain acyl-CoA dehydrogenase genotypes and identification of asymptomatic variants.PLoS One. 2012;7(9):e45110. doi: 10.1371/journal.pone.0045110. Epub 2012 Sep 17.
9 Medium chain acyl-CoA dehydrogenase deficiency and fatal valproate toxicity. Pediatr Neurol. 1997 Feb;16(2):160-2. doi: 10.1016/s0887-8994(96)00318-9.
10 The sudden infant death syndrome gene: does it exist?.Pediatrics. 2004 Oct;114(4):e506-12. doi: 10.1542/peds.2004-0683.
11 Genotypic differences of MCAD deficiency in the Asian population: novel genotype and clinical symptoms preceding newborn screening notification.Genet Med. 2005 May-Jun;7(5):339-43. doi: 10.1097/01.gim.0000164548.54482.9d.
12 Orchestrated downregulation of genes involved in oxidative metabolic pathways in obese vs. lean high-fat young male consumers.J Physiol Biochem. 2011 Mar;67(1):15-26. doi: 10.1007/s13105-010-0044-4. Epub 2010 Sep 30.
13 Vitamin D Ameliorates Fat Accumulation with AMPK/SIRT1 Activity in C2C12 Skeletal Muscle Cells.Nutrients. 2019 Nov 17;11(11):2806. doi: 10.3390/nu11112806.
14 In vitro and in vivo consequences of variant medium-chain acyl-CoA dehydrogenase genotypes.Orphanet J Rare Dis. 2013 Mar 20;8:43. doi: 10.1186/1750-1172-8-43.
15 Screening of MCAD deficiency in Japan: 16years' experience of enzymatic and genetic evaluation.Mol Genet Metab. 2016 Dec;119(4):322-328. doi: 10.1016/j.ymgme.2016.10.007. Epub 2016 Oct 21.
16 Bioinformatic analysis identifies potentially key differentially expressed genes in oncogenesis and progression of clear cell renal cell carcinoma.PeerJ. 2019 Nov 26;7:e8096. doi: 10.7717/peerj.8096. eCollection 2019.
17 Quantitative Proteomics of Th-MYCN Transgenic Mice Reveals Aurora Kinase Inhibitor Altered Metabolic Pathways and Enhanced ACADM To Suppress Neuroblastoma Progression.J Proteome Res. 2019 Nov 1;18(11):3850-3866. doi: 10.1021/acs.jproteome.9b00245. Epub 2019 Oct 11.
18 Establishing core outcome sets for phenylketonuria (PKU) and medium-chain Acyl-CoA dehydrogenase (MCAD) deficiency in children: study protocol for systematic reviews and Delphi surveys.Trials. 2017 Dec 19;18(1):603. doi: 10.1186/s13063-017-2327-3.
19 Clinical and genetic characteristics of patients with fatty acid oxidation disorders identified by newborn screening.BMC Pediatr. 2018 Mar 8;18(1):103. doi: 10.1186/s12887-018-1069-z.
20 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
21 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
22 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
23 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
24 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
25 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
26 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
27 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
28 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
29 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
30 Aspirin regulates hepatocellular lipid metabolism by activating AMPK signaling pathway. J Toxicol Sci. 2015 Feb;40(1):127-36. doi: 10.2131/jts.40.127.
31 Linalool is a PPARalpha ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome. J Lipid Res. 2014 Jun;55(6):1098-110.
32 Organochloride pesticides impaired mitochondrial function in hepatocytes and aggravated disorders of fatty acid metabolism. Sci Rep. 2017 Apr 11;7:46339. doi: 10.1038/srep46339.
33 ERK5/HDAC5-mediated, resveratrol-, and pterostilbene-induced expression of MnSOD in human endothelial cells. Mol Nutr Food Res. 2016 Feb;60(2):266-77. doi: 10.1002/mnfr.201500466. Epub 2015 Oct 23.
34 Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol. 2002 Jun;16(6):1243-56.
35 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
36 In vitro evaluation of the hepatic lipid accumulation of bisphenol analogs: A high-content screening assay. Toxicol In Vitro. 2020 Oct;68:104959. doi: 10.1016/j.tiv.2020.104959. Epub 2020 Aug 5.
37 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
38 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
39 Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmacol. 2019 Feb 15;365:61-70.
40 Medium chain acyl-CoA dehydrogenase deficiency and fatal valproate toxicity. Pediatr Neurol. 1997 Feb;16(2):160-2. doi: 10.1016/s0887-8994(96)00318-9.
41 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.