General Information of Disease (ID: DISW7AQ9)

Disease Name Aortic valve stenosis
Synonyms valvular aortic stenosis; stenosed aortic valve; rheumatic aortic stenosis; rheumatic aortic valve stenosis; aortic stenosis; AS
Disease Class BB70: Aortic valve stenosis
Definition
Aortic valve stenosis (AVS) is a condition characterized by narrowing of the heart's aortic valve opening. This narrowing prevents the valve from opening fully, which obstructs blood flow from the heart into the aorta, and onward to the rest of the body. AVS can range from mild to severe. Signs and symptoms typically develop when the narrowing of the opening is severe and may include chest pain (angina) or tightness; shortness of breath or fatigue (especially during exertion); feeling faint or fainting; heart palpitations; and heart murmur. Individuals with less severe congenital AVS (present at birth) may not develop symptoms until adulthood. Individuals with severe cases may faint without warning. AVS can have several causes including abnormal development before birth (such as having 1 or 2 valve leaflets instead of 3); calcium build-up on the valve in adulthood; and rheumatic fever.
Disease Hierarchy
DISQCXZX: Disorder of development or morphogenesis
DISKLYD7: Aortic valve disorder
DISW7AQ9: Aortic valve stenosis
ICD Code
ICD-11
ICD-11: BB70
ICD-10
ICD-10: I35.0
Expand ICD-11
'BB70
Expand ICD-10
'I35.0
Disease Identifiers
MONDO ID
MONDO_0042981
MESH ID
D001024
UMLS CUI
C0003507
MedGen ID
1621
HPO ID
HP:0001650
SNOMED CT ID
60573004

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 1 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
CER-522 DMGAW0H Phase 1 NA [1]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 22 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
APOB TTN1IE2 Limited Biomarker [2]
CD86 TT53XHB Limited Altered Expression [3]
CTSA TT5NILS Limited CausalMutation [4]
GATA4 TT1VDN2 Limited Biomarker [5]
MUC16 TTC1PS3 Limited Biomarker [6]
NPPB TTY63XT Limited Biomarker [7]
TNFRSF11B TT2CJ75 Limited Altered Expression [8]
EBP TT4VQZX moderate Biomarker [9]
PALMD TTIFD98 moderate Biomarker [10]
CAD TT2YT1K Strong Genetic Variation [11]
CNP TT71P0H Strong Biomarker [12]
CRTC1 TT4GO0F Strong Biomarker [13]
CTH TTLQUZS Strong Biomarker [14]
CYP11B2 TT9MNE2 Strong Biomarker [15]
GUCY2D TTWNFC2 Strong Genetic Variation [16]
LGALS3 TTFPQV7 Strong Biomarker [17]
MYH7 TTNIMDP Strong Biomarker [18]
NPPC TTRK0B9 Strong Altered Expression [19]
PLTP TTZF6SN Strong Biomarker [20]
REN TTB2MXP Strong Biomarker [21]
TNNT2 TTWAS18 Strong Biomarker [18]
VWF TT3SZBT Strong Biomarker [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 DTT(s)
This Disease Is Related to 1 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC22A4 DT2EG60 Strong Biomarker [23]
------------------------------------------------------------------------------------
This Disease Is Related to 27 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
GATA5 OTO81B63 Limited Biomarker [5]
MLC1 OTCNZLSP Limited Biomarker [24]
OGN OTKP5S4L Limited Altered Expression [25]
SDC4 OTKUVUGZ Limited Biomarker [26]
PTDSS1 OTXLIBD7 moderate Biomarker [27]
ARSD OTAHW9M8 Strong Biomarker [28]
C1QTNF9 OTLI3VA3 Strong Biomarker [29]
CHGB OT7SAQT2 Strong Altered Expression [30]
CILP OTKEY2NJ Strong Altered Expression [31]
CLTA OTLHOXMQ Strong Genetic Variation [16]
CRTAC1 OT4PGEVE Strong Genetic Variation [32]
CRYGC OTYSTQWI Strong Biomarker [33]
ENO3 OT3HYKYI Strong Biomarker [34]
FLNC OT3F8J6Y Strong Biomarker [18]
JARID2 OT14UM8H Strong Altered Expression [35]
KLF3 OTIIAC18 Strong Genetic Variation [36]
MFN1 OTCBXQZF Strong Altered Expression [37]
MPG OTAHW80B Strong Biomarker [38]
MYL7 OT7ZNDP4 Strong Altered Expression [35]
NINJ1 OTLRZ1EU Strong Biomarker [39]
NLRP6 OTEREN4W Strong Genetic Variation [40]
OGT OT1Z1ZXE Strong Biomarker [41]
PPP3CB OTEGNEHW Strong Altered Expression [42]
RNLS OTVP2WJM Strong Genetic Variation [43]
SCG2 OTXWUQQL Strong Biomarker [44]
SYPL2 OT6CV0CA Strong Genetic Variation [45]
TBX22 OTT1RM26 Strong Biomarker [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 DOT(s)

References

1 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800033541)
2 apoB/apoA-I Ratio and Lp(a) Associations With Aortic Valve Stenosis Incidence: Insights From the EPIC-Norfolk Prospective Population Study.J Am Heart Assoc. 2019 Aug 20;8(16):e013020. doi: 10.1161/JAHA.119.013020. Epub 2019 Aug 13.
3 Severe Aortic Valve Stenosis in Adults is Associated with Increased Levels of Circulating Intermediate Monocytes.J Cardiovasc Transl Res. 2017 Feb;10(1):27-34. doi: 10.1007/s12265-016-9726-9. Epub 2017 Jan 17.
4 Clinical utility of whole-exome sequencing in rare diseases: Galactosialidosis.Eur J Med Genet. 2014 Jul;57(7):339-344. doi: 10.1016/j.ejmg.2014.04.005. Epub 2014 Apr 24.
5 GATA5 interacts with GATA4 and GATA6 in outflow tract development.Dev Biol. 2011 Oct 15;358(2):368-78. doi: 10.1016/j.ydbio.2011.07.037. Epub 2011 Aug 4.
6 Determinants of elevated carbohydrate antigen 125 in patients with severe symptomatic aortic valve stenosis referred for transcatheter aortic valve implantation.Biomarkers. 2018 May;23(3):299-304. doi: 10.1080/1354750X.2018.1423706. Epub 2018 Jan 15.
7 Myocardial injury in fetal aortic stenosis: Insights from amniotic fluid analysis.Prenat Diagn. 2018 Feb;38(3):190-195. doi: 10.1002/pd.5213. Epub 2018 Feb 6.
8 Osteoprotegerin and Myocardial Fibrosis in Patients with Aortic Stenosis.Sci Rep. 2018 Sep 28;8(1):14550. doi: 10.1038/s41598-018-32738-y.
9 Cardiopulmonary Exercise Testing in Aortic Stenosis.Dan Med J. 2017 May;64(5):B5352.
10 Risk factors for valvular calcification.Curr Opin Endocrinol Diabetes Obes. 2019 Apr;26(2):96-102. doi: 10.1097/MED.0000000000000471.
11 Long-Term Cardiovascular Risk inWomenWith Hypertension DuringPregnancy.J Am Coll Cardiol. 2019 Dec 3;74(22):2743-2754. doi: 10.1016/j.jacc.2019.09.052. Epub 2019 Nov 11.
12 Distinct downregulation of C-type natriuretic peptide system in human aortic valve stenosis.Circulation. 2007 Sep 11;116(11):1283-9. doi: 10.1161/CIRCULATIONAHA.106.685743. Epub 2007 Aug 20.
13 Mechanistic role of the CREB-regulated transcription coactivator 1 in cardiac hypertrophy.J Mol Cell Cardiol. 2019 Feb;127:31-43. doi: 10.1016/j.yjmcc.2018.12.001. Epub 2018 Dec 4.
14 Hydrogen sulfide inhibits calcification of heart valves; implications for calcific aortic valve disease.Br J Pharmacol. 2020 Feb;177(4):793-809. doi: 10.1111/bph.14691. Epub 2019 Apr 24.
15 Lack of association among five genetic polymorphisms of the renin-angiotensin system and cardiac hypertrophy in patients with aortic stenosis.Am Heart J. 2001 Apr;141(4):671-6. doi: 10.1067/mhj.2001.113394.
16 Thromboembolic Occlusion of the Left Coronary Artery During Transcatheter Aortic Valve Implantation.J Invasive Cardiol. 2018 Feb;30(2):E21-E22.
17 Galectin-3 down-regulates antioxidant peroxiredoxin-4 in human cardiac fibroblasts: a new pathway to induce cardiac damage.Clin Sci (Lond). 2018 Jul 18;132(13):1471-1485. doi: 10.1042/CS20171389. Print 2018 Jul 18.
18 Heart failure-associated changes in RNA splicing of sarcomere genes.Circ Cardiovasc Genet. 2010 Apr;3(2):138-46. doi: 10.1161/CIRCGENETICS.109.904698. Epub 2010 Feb 2.
19 Molecular and clinical implications of natriuretic peptides in aortic valve stenosis.J Mol Cell Cardiol. 2019 Apr;129:266-271. doi: 10.1016/j.yjmcc.2019.03.011. Epub 2019 Mar 14.
20 Increased biglycan in aortic valve stenosis leads to the overexpression of phospholipid transfer protein via Toll-like receptor 2.Am J Pathol. 2010 Jun;176(6):2638-45. doi: 10.2353/ajpath.2010.090541. Epub 2010 Apr 9.
21 Aortic Stenosis, Aortic Regurgitation and Arterial Hypertension.Curr Vasc Pharmacol. 2019;17(2):180-190. doi: 10.2174/1570161116666180101165306.
22 Aortic stenosis and anemia with an update on approaches to managing angiodysplasia in 2018.Cardiol J. 2020;27(1):72-77. doi: 10.5603/CJ.a2018.0068. Epub 2018 Jul 16.
23 Sex-differences in aortic stenosis: Effect on functional capacity and prognosis.Int J Cardiol. 2020 Apr 1;304:130-134. doi: 10.1016/j.ijcard.2019.11.136. Epub 2019 Nov 28.
24 Better Myocardial Function in Aortic Stenosis with Low Left Ventricular Mass: A Mechanism of Protection against Heart Failure Regardless of Stenosis Severity?.J Clin Med. 2019 Nov 1;8(11):1836. doi: 10.3390/jcm8111836.
25 Osteoglycin prevents the development of age-related diastolic dysfunction during pressure overload by reducing cardiac fibrosis and inflammation.Matrix Biol. 2018 Mar;66:110-124. doi: 10.1016/j.matbio.2017.09.002. Epub 2017 Sep 25.
26 Symptom Onset in Aortic Stenosis: Relation to Sex Differences in Left Ventricular Remodeling.JACC Cardiovasc Imaging. 2019 Jan;12(1):96-105. doi: 10.1016/j.jcmg.2017.09.019. Epub 2017 Dec 13.
27 Three-dimensional thoracic aorta principal strain analysis from routine ECG-gated computerized tomography: feasibility in patients undergoing transcatheter aortic valve replacement.BMC Cardiovasc Disord. 2018 May 2;18(1):76. doi: 10.1186/s12872-018-0818-0.
28 Association between cardiovascular anomalies and karyotypes in Turner syndrome patients in Taiwan: A local cohort study.Pediatr Neonatol. 2020 Apr;61(2):188-194. doi: 10.1016/j.pedneo.2019.10.001. Epub 2019 Oct 11.
29 C1q-TNF-Related Protein-9 Promotes Cardiac Hypertrophy and Failure.Circ Res. 2017 Jan 6;120(1):66-77. doi: 10.1161/CIRCRESAHA.116.309398. Epub 2016 Nov 7.
30 Regulation of circulating chromogranin B levels in heart failure.Biomarkers. 2018 Feb;23(1):78-87. doi: 10.1080/1354750X.2017.1395079. Epub 2017 Nov 7.
31 Cartilage intermediate layer protein 1 (CILP1): A novel mediator of cardiac extracellular matrix remodelling.Sci Rep. 2017 Nov 22;7(1):16042. doi: 10.1038/s41598-017-16201-y.
32 Insights into the need for permanent pacemaker following implantation of the repositionable LOTUS valve for transcatheter aortic valve replacement in 250 patients: results from the REPRISE II trial with extended cohort.EuroIntervention. 2017 Sep 20;13(7):796-803. doi: 10.4244/EIJ-D-16-01025.
33 MicroRNA-19b is a potential biomarker of increased myocardial collagen cross-linking in patients with aortic stenosis and heart failure.Sci Rep. 2017 Jan 16;7:40696. doi: 10.1038/srep40696.
34 Differential expression of alpha- and beta-enolase genes during rat heart development and hypertrophy.Am J Physiol. 1995 Dec;269(6 Pt 2):H1843-51. doi: 10.1152/ajpheart.1995.269.6.H1843.
35 Induction by left ventricular overload and left ventricular failure of the human Jumonji gene (JARID2) encoding a protein that regulates transcription and reexpression of a protective fetal program.J Thorac Cardiovasc Surg. 2008 Sep;136(3):709-16. doi: 10.1016/j.jtcvs.2008.02.020. Epub 2008 Jun 9.
36 ENU-induced mutation in the DNA-binding domain of KLF3 reveals important roles for KLF3 in cardiovascular development and function in mice.PLoS Genet. 2013;9(7):e1003612. doi: 10.1371/journal.pgen.1003612. Epub 2013 Jul 11.
37 Soluble ST2 promotes oxidative stress and inflammation in cardiac fibroblasts: an in vitro and in vivo study in aortic stenosis.Clin Sci (Lond). 2019 Jul 17;133(14):1537-1548. doi: 10.1042/CS20190475. Print 2019 Jul 31.
38 Impact of Significant Mitral Regurgitation on Assessing the Severity of Aortic Stenosis.J Am Soc Echocardiogr. 2018 Jan;31(1):26-33. doi: 10.1016/j.echo.2017.09.012. Epub 2017 Nov 20.
39 Ninjurin1 regulates striated muscle growth and differentiation.PLoS One. 2019 May 15;14(5):e0216987. doi: 10.1371/journal.pone.0216987. eCollection 2019.
40 Aortic annulus measurement with computed tomography angiography reduces aortic regurgitation after transfemoral aortic valve replacement compared to 3-D echocardiography: a single-centre experience.Clin Res Cardiol. 2019 Nov;108(11):1266-1275. doi: 10.1007/s00392-019-01462-6. Epub 2019 Apr 10.
41 Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure.Physiol Genomics. 2012 Feb 1;44(2):162-72. doi: 10.1152/physiolgenomics.00016.2011. Epub 2011 Nov 29.
42 Upregulation of myocardial estrogen receptors in human aortic stenosis.Circulation. 2004 Nov 16;110(20):3270-5. doi: 10.1161/01.CIR.0000147610.41984.E8. Epub 2004 Nov 8.
43 Functional polymorphism of the renalase gene is associated with cardiac hypertrophy in female patients with aortic stenosis.PLoS One. 2017 Oct 24;12(10):e0186729. doi: 10.1371/journal.pone.0186729. eCollection 2017.
44 Circulating secretoneurin concentrations in patients with moderate to severe aortic stenosis.Clin Biochem. 2019 Sep;71:17-23. doi: 10.1016/j.clinbiochem.2019.06.008. Epub 2019 Jun 19.
45 Impact of Vascular Hemodynamics on Aortic Stenosis Evaluation: New Insights Into the Pathophysiology of Normal Flow-Small Aortic Valve Area-Low Gradient Pattern.J Am Heart Assoc. 2017 Jul 7;6(7):e006276. doi: 10.1161/JAHA.117.006276.