General Information of Drug Off-Target (DOT) (ID: OT1Z1ZXE)

DOT Name UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT)
Synonyms EC 2.4.1.255; O-GlcNAc transferase subunit p110; O-linked N-acetylglucosamine transferase 110 kDa subunit; OGT
Gene Name OGT
Related Disease
Cardiac failure ( )
Congestive heart failure ( )
Advanced cancer ( )
Alzheimer disease ( )
Aortic valve stenosis ( )
Autoimmune hepatitis ( )
B-cell lymphoma ( )
Breast cancer ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Cardiovascular disease ( )
Diabetic retinopathy ( )
Fatty liver disease ( )
Gastric cancer ( )
Hepatitis C virus infection ( )
Hepatocellular carcinoma ( )
Hyperinsulinemia ( )
Hyperproinsulinemia ( )
Intellectual disability, X-linked 106 ( )
Laryngeal carcinoma ( )
Liver cancer ( )
Matthew-Wood syndrome ( )
Neoplasm ( )
Non-insulin dependent diabetes ( )
Pancreatic cancer ( )
Stomach cancer ( )
Tauopathy ( )
Breast neoplasm ( )
Type-1/2 diabetes ( )
Breast carcinoma ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Intellectual disability ( )
Obesity ( )
Renal cell carcinoma ( )
UniProt ID
OGT1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1W3B ; 3PE3 ; 3PE4 ; 3TAX ; 4AY5 ; 4AY6 ; 4CDR ; 4GYW ; 4GYY ; 4GZ3 ; 4GZ5 ; 4GZ6 ; 4N39 ; 4N3A ; 4N3B ; 4N3C ; 4XI9 ; 4XIF ; 5BNW ; 5C1D ; 5HGV ; 5LVV ; 5LWV ; 5NPR ; 5NPS ; 5VIE ; 5VIF ; 6E37 ; 6EOU ; 6IBO ; 6MA1 ; 6MA2 ; 6MA3 ; 6MA4 ; 6MA5 ; 6Q4M ; 6TKA ; 7NTF ; 7YEA ; 7YEH ; 8CM9 ; 8FE6 ; 8FE7 ; 8FUF
EC Number
2.4.1.255
Pfam ID
PF13844 ; PF00515 ; PF13414 ; PF13424 ; PF13181
Sequence
MASSVGNVADSTEPTKRMLSFQGLAELAHREYQAGDFEAAERHCMQLWRQEPDNTGVLLL
LSSIHFQCRRLDRSAHFSTLAIKQNPLLAEAYSNLGNVYKERGQLQEAIEHYRHALRLKP
DFIDGYINLAAALVAAGDMEGAVQAYVSALQYNPDLYCVRSDLGNLLKALGRLEEAKACY
LKAIETQPNFAVAWSNLGCVFNAQGEIWLAIHHFEKAVTLDPNFLDAYINLGNVLKEARI
FDRAVAAYLRALSLSPNHAVVHGNLACVYYEQGLIDLAIDTYRRAIELQPHFPDAYCNLA
NALKEKGSVAEAEDCYNTALRLCPTHADSLNNLANIKREQGNIEEAVRLYRKALEVFPEF
AAAHSNLASVLQQQGKLQEALMHYKEAIRISPTFADAYSNMGNTLKEMQDVQGALQCYTR
AIQINPAFADAHSNLASIHKDSGNIPEAIASYRTALKLKPDFPDAYCNLAHCLQIVCDWT
DYDERMKKLVSIVADQLEKNRLPSVHPHHSMLYPLSHGFRKAIAERHGNLCLDKINVLHK
PPYEHPKDLKLSDGRLRVGYVSSDFGNHPTSHLMQSIPGMHNPDKFEVFCYALSPDDGTN
FRVKVMAEANHFIDLSQIPCNGKAADRIHQDGIHILVNMNGYTKGARNELFALRPAPIQA
MWLGYPGTSGALFMDYIITDQETSPAEVAEQYSEKLAYMPHTFFIGDHANMFPHLKKKAV
IDFKSNGHIYDNRIVLNGIDLKAFLDSLPDVKIVKMKCPDGGDNADSSNTALNMPVIPMN
TIAEAVIEMINRGQIQITINGFSISNGLATTQINNKAATGEEVPRTIIVTTRSQYGLPED
AIVYCNFNQLYKIDPSTLQMWANILKRVPNSVLWLLRFPAVGEPNIQQYAQNMGLPQNRI
IFSPVAPKEEHVRRGQLADVCLDTPLCNGHTTGMDVLWAGTPMVTMPGETLASRVAASQL
TCLGCLELIAKNRQEYEDIAVKLGTDLEYLKKVRGKVWKQRISSPLFNTKQYTMELERLY
LQMWEHYAAGNKPDHMIKPVEVTESA
Function
Catalyzes the transfer of a single N-acetylglucosamine from UDP-GlcNAc to a serine or threonine residue in cytoplasmic and nuclear proteins resulting in their modification with a beta-linked N-acetylglucosamine (O-GlcNAc). Glycosylates a large and diverse number of proteins including histone H2B, AKT1, AMPK, ATG4B, CAPRIN1, EZH2, FNIP1, KRT7, LMNA, LMNB1, LMNB2, RPTOR, HOXA1, PFKL, KMT2E/MLL5, MAPT/TAU, TET2, RBL2, RET, NOD2 and HCFC1. Can regulate their cellular processes via cross-talk between glycosylation and phosphorylation or by affecting proteolytic processing. Involved in insulin resistance in muscle and adipocyte cells via glycosylating insulin signaling components and inhibiting the 'Thr-308' phosphorylation of AKT1, enhancing IRS1 phosphorylation and attenuating insulin signaling. Involved in glycolysis regulation by mediating glycosylation of 6-phosphofructokinase PFKL, inhibiting its activity. Plays a key role in chromatin structure by mediating O-GlcNAcylation of 'Ser-112' of histone H2B: recruited to CpG-rich transcription start sites of active genes via its interaction with TET proteins (TET1, TET2 or TET3). As part of the NSL complex indirectly involved in acetylation of nucleosomal histone H4 on several lysine residues. O-GlcNAcylation of 'Ser-75' of EZH2 increases its stability, and facilitating the formation of H3K27me3 by the PRC2/EED-EZH2 complex. Stabilizes KMT2E/MLL5 by mediating its glycosylation, thereby preventing KMT2E/MLL5 ubiquitination. Regulates circadian oscillation of the clock genes and glucose homeostasis in the liver. Stabilizes clock proteins BMAL1 and CLOCK through O-glycosylation, which prevents their ubiquitination and subsequent degradation. Promotes the CLOCK-BMAL1-mediated transcription of genes in the negative loop of the circadian clock such as PER1/2 and CRY1/2. O-glycosylates HCFC1 and regulates its proteolytic processing and transcriptional activity. Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1. Regulates mitochondrial motility in neurons by mediating glycosylation of TRAK1. Promotes autophagy by mediating O-glycosylation of ATG4B. Acts as a regulator of mTORC1 signaling by mediating O-glycosylation of RPTOR and FNIP1: O-GlcNAcylation of RPTOR in response to glucose sufficiency promotes activation of the mTORC1 complex ; [Isoform 2]: The mitochondrial isoform (mOGT) is cytotoxic and triggers apoptosis in several cell types including INS1, an insulinoma cell line; [Isoform 4]: Has N-acetylglucosaminyltransferase activity: glycosylates proteins, such as HNRNPU, NEUROD1, NUP62 and PDCD6IP. Displays specific substrate selectivity compared to other isoforms.
Tissue Specificity Highly expressed in pancreas and to a lesser extent in skeletal muscle, heart, brain and placenta. Present in trace amounts in lung and liver.
KEGG Pathway
Other types of O-glycan biosynthesis (hsa00514 )
Polycomb repressive complex (hsa03083 )
Insulin resistance (hsa04931 )
Reactome Pathway
RIPK1-mediated regulated necrosis (R-HSA-5213460 )
Regulation of necroptotic cell death (R-HSA-5675482 )
UCH proteinases (R-HSA-5689603 )
Formation of WDR5-containing histone-modifying complexes (R-HSA-9772755 )
HATs acetylate histones (R-HSA-3214847 )
BioCyc Pathway
MetaCyc:ENSG00000147162-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

34 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cardiac failure DISDC067 Definitive Biomarker [1]
Congestive heart failure DIS32MEA Definitive Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Alzheimer disease DISF8S70 Strong Biomarker [3]
Aortic valve stenosis DISW7AQ9 Strong Biomarker [1]
Autoimmune hepatitis DISOX03Q Strong Altered Expression [4]
B-cell lymphoma DISIH1YQ Strong Biomarker [5]
Breast cancer DIS7DPX1 Strong Altered Expression [6]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Strong Altered Expression [7]
Cardiovascular disease DIS2IQDX Strong Biomarker [2]
Diabetic retinopathy DISHGUJM Strong Altered Expression [8]
Fatty liver disease DIS485QZ Strong Biomarker [9]
Gastric cancer DISXGOUK Strong Altered Expression [10]
Hepatitis C virus infection DISQ0M8R Strong Altered Expression [11]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [12]
Hyperinsulinemia DISIDWT6 Strong Biomarker [13]
Hyperproinsulinemia DISSQ05S Strong Altered Expression [14]
Intellectual disability, X-linked 106 DIS77TJ8 Strong X-linked [15]
Laryngeal carcinoma DISNHCIV Strong Altered Expression [16]
Liver cancer DISDE4BI Strong Altered Expression [7]
Matthew-Wood syndrome DISA7HR7 Strong Biomarker [17]
Neoplasm DISZKGEW Strong Biomarker [18]
Non-insulin dependent diabetes DISK1O5Z Strong Altered Expression [19]
Pancreatic cancer DISJC981 Strong Biomarker [20]
Stomach cancer DISKIJSX Strong Altered Expression [10]
Tauopathy DISY2IPA Strong Biomarker [21]
Breast neoplasm DISNGJLM moderate Biomarker [22]
Type-1/2 diabetes DISIUHAP moderate Biomarker [23]
Breast carcinoma DIS2UE88 Disputed Altered Expression [6]
Clear cell renal carcinoma DISBXRFJ Limited Altered Expression [24]
Colorectal carcinoma DIS5PYL0 Limited Biomarker [25]
Intellectual disability DISMBNXP Limited Genetic Variation [26]
Obesity DIS47Y1K Limited Altered Expression [19]
Renal cell carcinoma DISQZ2X8 Limited Altered Expression [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT) increases the response to substance of Arsenic trioxide. [46]
GDC0941 DM1YAK6 Phase 2 UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT) increases the response to substance of GDC0941. [47]
BEZ235 DMKBRDL Phase 2 UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT) increases the response to substance of BEZ235. [47]
------------------------------------------------------------------------------------
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [27]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [28]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [29]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [30]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [31]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [32]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [33]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [34]
Progesterone DMUY35B Approved Progesterone decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [36]
Menadione DMSJDTY Approved Menadione affects the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [34]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [37]
Nicotine DMWX5CO Approved Nicotine increases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [38]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [39]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [40]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [29]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [42]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [44]
Butanoic acid DMTAJP7 Investigative Butanoic acid decreases the expression of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [45]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Marinol DM70IK5 Approved Marinol decreases the methylation of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [35]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [41]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT). [43]
------------------------------------------------------------------------------------

References

1 Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure.Physiol Genomics. 2012 Feb 1;44(2):162-72. doi: 10.1152/physiolgenomics.00016.2011. Epub 2011 Nov 29.
2 Novel glucopyranoside C2-derived 1,2,3-triazoles displaying selective inhibition of O-GlcNAcase (OGA).Carbohydr Res. 2019 Jan 1;471:43-55. doi: 10.1016/j.carres.2018.10.007. Epub 2018 Oct 26.
3 Early and Persistent O-GlcNAc Protein Modification in the Streptozotocin Model of Alzheimer's Disease.J Alzheimers Dis. 2018;61(1):237-249. doi: 10.3233/JAD-170211.
4 Deficient O-GlcNAc Glycosylation Impairs Regulatory T Cell Differentiation and Notch Signaling in Autoimmune Hepatitis.Front Immunol. 2018 Oct 9;9:2089. doi: 10.3389/fimmu.2018.02089. eCollection 2018.
5 Targeting the hexosamine biosynthetic pathway and O-linked N-acetylglucosamine cycling for therapeutic and imaging capabilities in diffuse large B-cell lymphoma.Oncotarget. 2016 Dec 6;7(49):80599-80611. doi: 10.18632/oncotarget.12413.
6 O-GlcNAc-Dependent Regulation of Progesterone Receptor Function in Breast Cancer.Horm Cancer. 2018 Feb;9(1):12-21. doi: 10.1007/s12672-017-0310-9. Epub 2017 Sep 19.
7 Inhibiting the Hexosamine Biosynthetic Pathway Lowers O-GlcNAcylation Levels and Sensitizes Cancer to Environmental Stress.Biochemistry. 2020 Sep 1;59(34):3169-3179. doi: 10.1021/acs.biochem.9b00560. Epub 2019 Nov 18.
8 Identification of O-GlcNAcylation Modification in Diabetic Retinopathy and Crosstalk with Phosphorylation of STAT3 in Retina Vascular Endothelium Cells.Cell Physiol Biochem. 2018;49(4):1389-1402. doi: 10.1159/000493444. Epub 2018 Sep 11.
9 O-GlcNAc transferase promotes fatty liver-associated liver cancer through inducing palmitic acid and activating endoplasmic reticulum stress.J Hepatol. 2017 Aug;67(2):310-320. doi: 10.1016/j.jhep.2017.03.017. Epub 2017 Mar 25.
10 Elevated O-GlcNAcylation promotes gastric cancer cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling.Oncotarget. 2016 Sep 20;7(38):61390-61402. doi: 10.18632/oncotarget.11359.
11 Functional microRNA screen uncovers O-linked N-acetylglucosamine transferase as a host factor modulating hepatitis C virus morphogenesis and infectivity.Gut. 2020 Feb;69(2):380-392. doi: 10.1136/gutjnl-2018-317423. Epub 2019 May 10.
12 O-GlcNAc transferase activates stem-like cell potential in hepatocarcinoma through O-GlcNAcylation of eukaryotic initiation factor 4E.J Cell Mol Med. 2019 Apr;23(4):2384-2398. doi: 10.1111/jcmm.14043. Epub 2019 Jan 24.
13 Neuronal O-GlcNAc transferase regulates appetite, body weight, and peripheral insulin resistance.Neurobiol Aging. 2018 Oct;70:40-50. doi: 10.1016/j.neurobiolaging.2018.05.036. Epub 2018 Jun 4.
14 eIF4G1 and carboxypeptidase E axis dysregulation in O-GlcNAc transferase-deficient pancreatic -cells contributes to hyperproinsulinemia in mice.J Biol Chem. 2019 Aug 30;294(35):13040-13050. doi: 10.1074/jbc.RA119.008670. Epub 2019 Jul 12.
15 Nonsyndromic X-linked intellectual deficiency in three brothers with a novel MED12 missense mutation [c.5922G>T (p.Glu1974His)]. Clin Case Rep. 2015 Jul;3(7):604-9. doi: 10.1002/ccr3.301. Epub 2015 May 26.
16 Gene and protein expression of O-GlcNAc-cycling enzymes in human laryngeal cancer.Clin Exp Med. 2015 Nov;15(4):455-68. doi: 10.1007/s10238-014-0318-1. Epub 2014 Oct 15.
17 Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-B activity in pancreatic cancer cells.J Biol Chem. 2013 May 24;288(21):15121-30. doi: 10.1074/jbc.M113.470047. Epub 2013 Apr 16.
18 A novel ASXL1-OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies.Leukemia. 2018 Jun;32(6):1327-1337. doi: 10.1038/s41375-018-0083-3. Epub 2018 Mar 3.
19 Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity.Mol Metab. 2018 May;11:160-177. doi: 10.1016/j.molmet.2018.02.010. Epub 2018 Feb 24.
20 Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1.J Biol Chem. 2013 Nov 22;288(47):33927-33938. doi: 10.1074/jbc.M113.500983. Epub 2013 Oct 15.
21 Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice.Mol Neurodegener. 2017 May 18;12(1):39. doi: 10.1186/s13024-017-0181-0.
22 Gene expression of O-GlcNAc cycling enzymes in human breast cancers.Clin Exp Med. 2012 Mar;12(1):61-5. doi: 10.1007/s10238-011-0138-5. Epub 2011 May 13.
23 O-GlcNAcase Fragment Discovery with Fluorescence Polarimetry.ACS Chem Biol. 2018 May 18;13(5):1353-1360. doi: 10.1021/acschembio.8b00183. Epub 2018 May 2.
24 Suppressed OGT expression inhibits cell proliferation and modulates EGFR expression in renal cell carcinoma.Cancer Manag Res. 2019 Mar 19;11:2215-2223. doi: 10.2147/CMAR.S190642. eCollection 2019.
25 O-GlcNAcylation promotes colorectal cancer progression by regulating protein stability and potential catcinogenic function of DDX5.J Cell Mol Med. 2019 Feb;23(2):1354-1362. doi: 10.1111/jcmm.14038. Epub 2018 Nov 28.
26 A missense mutation in the catalytic domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual disability.FEBS Lett. 2020 Feb;594(4):717-727. doi: 10.1002/1873-3468.13640. Epub 2019 Nov 7.
27 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
28 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
29 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
30 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
31 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
32 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
33 Transcriptome responses in blood reveal distinct biological pathways associated with arsenic exposure through drinking water in rural settings of Punjab, Pakistan. Environ Int. 2020 Feb;135:105403. doi: 10.1016/j.envint.2019.105403. Epub 2019 Dec 18.
34 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
35 Epigenetic activation of O-linked -N-acetylglucosamine transferase overrides the differentiation blockage in acute leukemia. EBioMedicine. 2020 Apr;54:102678. doi: 10.1016/j.ebiom.2020.102678. Epub 2020 Apr 6.
36 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
37 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
38 Nicotinic modulation of gene expression in SH-SY5Y neuroblastoma cells. Brain Res. 2006 Oct 20;1116(1):39-49.
39 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
40 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
41 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
42 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
43 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
44 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
45 O-Linked N-Acetylglucosamine (O-GlcNAc) Transferase and O-GlcNAcase Interact with Mi2 Protein at the A-Globin Promoter. J Biol Chem. 2016 Jul 22;291(30):15628-40. doi: 10.1074/jbc.M116.721928. Epub 2016 May 26.
46 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.
47 Modulators of sensitivity and resistance to inhibition of PI3K identified in a pharmacogenomic screen of the NCI-60 human tumor cell line collection. PLoS One. 2012;7(9):e46518. doi: 10.1371/journal.pone.0046518. Epub 2012 Sep 28.