General Information of Drug Off-Target (DOT) (ID: OT14UM8H)

DOT Name Protein Jumonji (JARID2)
Synonyms Jumonji/ARID domain-containing protein 2
Gene Name JARID2
Related Disease
Acute monocytic leukemia ( )
Adult acute monocytic leukemia ( )
Aortic valve stenosis ( )
Autism spectrum disorder ( )
Bladder cancer ( )
Cardiac failure ( )
Cleft palate ( )
Colitis ( )
Colon cancer ( )
Colon carcinoma ( )
Congestive heart failure ( )
Developmental delay with variable intellectual disability and dysmorphic facies ( )
Dilated cardiomyopathy ( )
Dilated cardiomyopathy 1A ( )
Epithelial ovarian cancer ( )
Glioma ( )
Isolated cleft palate ( )
leukaemia ( )
Leukemia ( )
Metastatic malignant neoplasm ( )
Neoplasm ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Pervasive developmental disorder ( )
Primary myelofibrosis ( )
Prostate cancer ( )
Prostate carcinoma ( )
Rhabdomyosarcoma ( )
Schizophrenia ( )
Small lymphocytic lymphoma ( )
T-cell leukaemia ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Tetralogy of fallot ( )
Syndromic intellectual disability ( )
Neural tube defect ( )
Advanced cancer ( )
Haematological malignancy ( )
Intellectual disability ( )
Lung cancer ( )
Lung carcinoma ( )
Myelodysplastic syndrome ( )
Myeloproliferative neoplasm ( )
UniProt ID
JARD2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5HYN; 5LS6; 5WAI; 6C23; 6C24; 6NQ3; 6WKR; 7KSO
Pfam ID
PF01388 ; PF02373 ; PF02375 ; PF02928
Sequence
MSKERPKRNIIQKKYDDSDGIPWSEERVVRKVLYLSLKEFKNSQKRQHAEGIAGSLKTVN
GLLGNDQSKGLGPASEQSENEKDDASQVSSTSNDVSSSDFEEGPSRKRPRLQAQRKFAQS
QPNSPSTTPVKIVEPLLPPPATQISDLSKRKPKTEDFLTFLCLRGSPALPNSMVYFGSSQ
DEEEVEEEDDETEDVKTATNNASSSCQSTPRKGKTHKHVHNGHVFNGSSRSTREKEPVQK
HKSKEATPAKEKHSDHRADSRREQASANHPAAAPSTGSSAKGLAATHHHPPLHRSAQDLR
KQVSKVNGVTRMSSLGAGVTSAKKMREVRPSPSKTVKYTATVTKGAVTYTKAKRELVKDT
KPNHHKPSSAVNHTISGKTESSNAKTRKQVLSLGGASKSTGPAVNGLKVSGRLNPKSCTK
EVGGRQLREGLQLREGLRNSKRRLEEAHQAEKPQSPPKKMKGAAGPAEGPGKKAPAERGL
LNGHVKKEVPERSLERNRPKRATAGKSTPGRQAHGKADSASCENRSTSQPESVHKPQDSG
KAEKGGGKAGWAAMDEIPVLRPSAKEFHDPLIYIESVRAQVEKFGMCRVIPPPDWRPECK
LNDEMRFVTQIQHIHKLGRRWGPNVQRLACIKKHLKSQGITMDELPLIGGCELDLACFFR
LINEMGGMQQVTDLKKWNKLADMLRIPRTAQDRLAKLQEAYCQYLLSYDSLSPEEHRRLE
KEVLMEKEILEKRKGPLEGHTENDHHKFHPLPRFEPKNGLIHGVAPRNGFRSKLKEVGQA
QLKTGRRRLFAQEKEVVKEEEEDKGVLNDFHKCIYKGRSVSLTTFYRTARNIMSMCFSKE
PAPAEIEQEYWRLVEEKDCHVAVHCGKVDTNTHGSGFPVGKSEPFSRHGWNLTVLPNNTG
SILRHLGAVPGVTIPWLNIGMVFSTSCWSRDQNHLPYIDYLHTGADCIWYCIPAEEENKL
EDVVHTLLQANGTPGLQMLESNVMISPEVLCKEGIKVHRTVQQSGQFVVCFPGSFVSKVC
CGYSVSETVHFATTQWTSMGFETAKEMKRRHIAKPFSMEKLLYQIAQAEAKKENGPTLST
ISALLDELRDTELRQRRQLFEAGLHSSARYGSHDGSSTVADGKKKPRKWLQLETSERRCQ
ICQHLCYLSMVVQENENVVFCLECALRHVEKQKSCRGLKLMYRYDEEQIISLVNQICGKV
SGKNGSIENCLSKPTPKRGPRKRATVDVPPSRLSASSSSKSASSSS
Function
Regulator of histone methyltransferase complexes that plays an essential role in embryonic development, including heart and liver development, neural tube fusion process and hematopoiesis. Acts as an accessory subunit for the core PRC2 (Polycomb repressive complex 2) complex, which mediates histone H3K27 (H3K27me3) trimethylation on chromatin. Binds DNA and mediates the recruitment of the PRC2 complex to target genes in embryonic stem cells, thereby playing a key role in stem cell differentiation and normal embryonic development. In cardiac cells, it is required to repress expression of cyclin-D1 (CCND1) by activating methylation of 'Lys-9' of histone H3 (H3K9me) by the GLP1/EHMT1 and G9a/EHMT2 histone methyltransferases. Also acts as a transcriptional repressor of ANF via its interaction with GATA4 and NKX2-5. Participates in the negative regulation of cell proliferation signaling. Does not have histone demethylase activity.
Tissue Specificity During embryogenesis, predominantly expressed in neurons and particularly in dorsal root ganglion cells.
KEGG Pathway
Polycomb repressive complex (hsa03083 )
Sig.ling pathways regulating pluripotency of stem cells (hsa04550 )
Reactome Pathway
PRC2 methylates histones and DNA (R-HSA-212300 )

Molecular Interaction Atlas (MIA) of This DOT

43 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute monocytic leukemia DIS28NEL Strong Biomarker [1]
Adult acute monocytic leukemia DISG6BLX Strong Biomarker [1]
Aortic valve stenosis DISW7AQ9 Strong Altered Expression [2]
Autism spectrum disorder DISXK8NV Strong Genetic Variation [3]
Bladder cancer DISUHNM0 Strong Altered Expression [4]
Cardiac failure DISDC067 Strong Altered Expression [2]
Cleft palate DIS6G5TF Strong Genetic Variation [5]
Colitis DISAF7DD Strong Biomarker [6]
Colon cancer DISVC52G Strong Biomarker [1]
Colon carcinoma DISJYKUO Strong Biomarker [1]
Congestive heart failure DIS32MEA Strong Altered Expression [2]
Developmental delay with variable intellectual disability and dysmorphic facies DISYURLC Strong Autosomal dominant [7]
Dilated cardiomyopathy DISX608J Strong Biomarker [8]
Dilated cardiomyopathy 1A DIS0RK9Z Strong Biomarker [8]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [9]
Glioma DIS5RPEH Strong Biomarker [10]
Isolated cleft palate DISV80CD Strong Genetic Variation [5]
leukaemia DISS7D1V Strong Biomarker [1]
Leukemia DISNAKFL Strong Biomarker [1]
Metastatic malignant neoplasm DIS86UK6 Strong Altered Expression [11]
Neoplasm DISZKGEW Strong Biomarker [12]
Ovarian cancer DISZJHAP Strong Biomarker [9]
Ovarian neoplasm DISEAFTY Strong Biomarker [9]
Pervasive developmental disorder DIS51975 Strong Genetic Variation [3]
Primary myelofibrosis DIS6L0CN Strong Biomarker [13]
Prostate cancer DISF190Y Strong Biomarker [14]
Prostate carcinoma DISMJPLE Strong Biomarker [14]
Rhabdomyosarcoma DISNR7MS Strong Altered Expression [11]
Schizophrenia DISSRV2N Strong Biomarker [15]
Small lymphocytic lymphoma DIS30POX Strong Altered Expression [1]
T-cell leukaemia DISJ6YIF Strong Biomarker [16]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [4]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [4]
Tetralogy of fallot DISMHFNW moderate Biomarker [17]
Syndromic intellectual disability DISH7SDF Supportive Autosomal dominant [18]
Neural tube defect DIS5J95E Disputed Genetic Variation [19]
Advanced cancer DISAT1Z9 Limited Altered Expression [14]
Haematological malignancy DISCDP7W Limited Biomarker [20]
Intellectual disability DISMBNXP Limited Biomarker [21]
Lung cancer DISCM4YA Limited Biomarker [22]
Lung carcinoma DISTR26C Limited Biomarker [22]
Myelodysplastic syndrome DISYHNUI Limited Biomarker [20]
Myeloproliferative neoplasm DIS5KAPA Limited Genetic Variation [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 43 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved Protein Jumonji (JARID2) increases the response to substance of Arsenic trioxide. [37]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Protein Jumonji (JARID2). [23]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Protein Jumonji (JARID2). [24]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Protein Jumonji (JARID2). [25]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Protein Jumonji (JARID2). [26]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Protein Jumonji (JARID2). [27]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Protein Jumonji (JARID2). [28]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Protein Jumonji (JARID2). [29]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Protein Jumonji (JARID2). [27]
Menadione DMSJDTY Approved Menadione affects the expression of Protein Jumonji (JARID2). [30]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Protein Jumonji (JARID2). [27]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Protein Jumonji (JARID2). [31]
Camptothecin DM6CHNJ Phase 3 Camptothecin decreases the expression of Protein Jumonji (JARID2). [27]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Protein Jumonji (JARID2). [32]
Scriptaid DM9JZ21 Preclinical Scriptaid increases the expression of Protein Jumonji (JARID2). [27]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Protein Jumonji (JARID2). [35]
geraniol DMS3CBD Investigative geraniol increases the expression of Protein Jumonji (JARID2). [36]
Octanedioic acid bis-hydroxyamide DMJNQ9K Investigative Octanedioic acid bis-hydroxyamide increases the expression of Protein Jumonji (JARID2). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Protein Jumonji (JARID2). [33]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the methylation of Protein Jumonji (JARID2). [34]
------------------------------------------------------------------------------------

References

1 JARID2 inhibits leukemia cell proliferation by regulating CCND1 expression.Int J Hematol. 2015 Jul;102(1):76-85. doi: 10.1007/s12185-015-1797-x. Epub 2015 May 5.
2 Induction by left ventricular overload and left ventricular failure of the human Jumonji gene (JARID2) encoding a protein that regulates transcription and reexpression of a protective fetal program.J Thorac Cardiovasc Surg. 2008 Sep;136(3):709-16. doi: 10.1016/j.jtcvs.2008.02.020. Epub 2008 Jun 9.
3 A study of single nucleotide polymorphisms in CD157, AIM2 and JARID2 genes in Han Chinese children with autism spectrum disorder.Nord J Psychiatry. 2018 Apr;72(3):179-183. doi: 10.1080/08039488.2017.1410570. Epub 2017 Dec 7.
4 Jarid2 enhances the progression of bladder cancer through regulating PTEN/AKT signaling.Life Sci. 2019 Aug 1;230:162-168. doi: 10.1016/j.lfs.2019.05.053. Epub 2019 May 21.
5 Brazilian multicenter study of association between polymorphisms in CRISPLD2 and JARID2 and non-syndromic oral clefts.J Oral Pathol Med. 2017 Mar;46(3):232-239. doi: 10.1111/jop.12470. Epub 2016 Jun 21.
6 MiR-155 contributes to Th17 cells differentiation in dextran sulfate sodium (DSS)-induced colitis mice via Jarid2.Biochem Biophys Res Commun. 2017 Jun 17;488(1):6-14. doi: 10.1016/j.bbrc.2017.04.143. Epub 2017 Apr 28.
7 Haploinsufficiency of two histone modifier genes on 6p22.3, ATXN1 and JARID2, is associated with intellectual disability. Orphanet J Rare Dis. 2013 Jan 7;8:3. doi: 10.1186/1750-1172-8-3.
8 Myocardial-specific ablation of Jumonji and AT-rich interaction domain-containing 2 (Jarid2) leads to dilated cardiomyopathy in mice.J Biol Chem. 2019 Mar 29;294(13):4981-4996. doi: 10.1074/jbc.RA118.005634. Epub 2019 Jan 30.
9 Knockdown of JARID2 inhibits the proliferation and invasion of ovarian cancer through the PI3K/Akt signaling pathway.Mol Med Rep. 2017 Sep;16(3):3600-3605. doi: 10.3892/mmr.2017.7024. Epub 2017 Jul 17.
10 Reduced Expression of Jumonji AT-Rich Interactive Domain 2 (JARID2) in Glioma Inhibits Tumor Growth In Vitro and In Vivo.Oncol Res. 2017 Mar 13;25(3):365-372. doi: 10.3727/096504016X14738135889976. Epub 2016 Sep 16.
11 JARID2 is a direct target of the PAX3-FOXO1 fusion protein and inhibits myogenic differentiation of rhabdomyosarcoma cells.Oncogene. 2014 Feb 27;33(9):1148-57. doi: 10.1038/onc.2013.46. Epub 2013 Feb 25.
12 Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia.Mol Cell Proteomics. 2018 Feb;17(2):290-303. doi: 10.1074/mcp.RA117.000425. Epub 2017 Dec 1.
13 miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis.Blood. 2014 Sep 25;124(13):e21-32. doi: 10.1182/blood-2013-12-544197. Epub 2014 Aug 5.
14 Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl.Oncogenesis. 2019 Feb 19;8(3):14. doi: 10.1038/s41389-019-0122-6.
15 Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia.J Biomed Biotechnol. 2009;2009:536918. doi: 10.1155/2009/536918. Epub 2009 Oct 27.
16 A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia.Genes Dev. 2012 Apr 1;26(7):651-6. doi: 10.1101/gad.186411.111. Epub 2012 Mar 19.
17 miRNA-940 reduction contributes to human Tetralogy of Fallot development.J Cell Mol Med. 2014 Sep;18(9):1830-9. doi: 10.1111/jcmm.12309. Epub 2014 Jun 1.
18 JARID2 haploinsufficiency is associated with a clinically distinct neurodevelopmental syndrome. Genet Med. 2021 Feb;23(2):374-383. doi: 10.1038/s41436-020-00992-z. Epub 2020 Oct 20.
19 Gene and microRNA expression in p53-deficient day 8.5 mouse embryos.Birth Defects Res A Clin Mol Teratol. 2009 Jun;85(6):546-55. doi: 10.1002/bdra.20565.
20 JARID2 Functions as a Tumor Suppressor in Myeloid Neoplasms by Repressing Self-Renewal in Hematopoietic Progenitor Cells.Cancer Cell. 2018 Nov 12;34(5):741-756.e8. doi: 10.1016/j.ccell.2018.10.008.
21 Intragenic CNVs for epigenetic regulatory genes in intellectual disability: Survey identifies pathogenic and benign single exon changes.Am J Med Genet A. 2016 Nov;170(11):2916-2926. doi: 10.1002/ajmg.a.37669.
22 MEG3 Long Noncoding RNA Contributes to the Epigenetic Regulation of Epithelial-Mesenchymal Transition in Lung Cancer Cell Lines.J Biol Chem. 2017 Jan 6;292(1):82-99. doi: 10.1074/jbc.M116.750950. Epub 2016 Nov 16.
23 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
24 Differential responses to retinoic acid and endocrine disruptor compounds of subpopulations within human embryonic stem cell lines. Differentiation. 2012 Nov;84(4):330-43. doi: 10.1016/j.diff.2012.07.006. Epub 2012 Aug 18.
25 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
26 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
27 Development and validation of the TGx-HDACi transcriptomic biomarker to detect histone deacetylase inhibitors in human TK6 cells. Arch Toxicol. 2021 May;95(5):1631-1645. doi: 10.1007/s00204-021-03014-2. Epub 2021 Mar 26.
28 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
29 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
30 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
31 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
32 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
33 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
34 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
35 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
36 Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016 Oct;5(10):2899-2908.
37 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.