General Information of Drug Off-Target (DOT) (ID: OTO7TNDD)

DOT Name GDH/6PGL endoplasmic bifunctional protein (H6PD)
Gene Name H6PD
Related Disease
B-cell neoplasm ( )
Central diabetes insipidus ( )
Hyperinsulinemic hypoglycemia ( )
Leishmaniasis ( )
Multiple sclerosis ( )
Primary hyperoxaluria ( )
Advanced cancer ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Beta thalassemia ( )
Beta-thalassemia major ( )
Breast neoplasm ( )
Cardiovascular disease ( )
Colorectal neoplasm ( )
Cone-rod dystrophy 2 ( )
Cortisone reductase deficiency 1 ( )
Fatty liver disease ( )
Giardiasis ( )
Hypoglycemia ( )
Intrahepatic cholangiocarcinoma ( )
Obesity ( )
Fetal growth restriction ( )
Type-1/2 diabetes ( )
Cortisone reductase deficiency ( )
Neoplasm ( )
Breast cancer ( )
Breast carcinoma ( )
Hemolytic anemia ( )
Hyperinsulinemia ( )
Malaria ( )
UniProt ID
G6PE_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8EM2
EC Number
1.1.1.363; 1.1.1.47; 3.1.1.31
Pfam ID
PF02781 ; PF00479 ; PF01182
Sequence
MWNMLIVAMCLALLGCLQAQELQGHVSIILLGATGDLAKKYLWQGLFQLYLDEAGRGHSF
SFHGAALTAPKQGQELMAKALESLSCPKDMAPSHCAEHKDQFLQLSQYRQLKTAEDYQAL
NKDIEAQLQHAGLREAGRIFYFSVPPFAYEDIARNINSSCRPGPGAWLRVVLEKPFGHDH
FSAQQLATELGTFFQEEEMYRVDHYLGKQAVAQILPFRDQNRKALDGLWNRHHVERVEII
MKETVDAEGRTSFYEEYGVIRDVLQNHLTEVLTLVAMELPHNVSSAEAVLRHKLQVFQAL
RGLQRGSAVVGQYQSYSEQVRRELQKPDSFHSLTPTFAAVLVHIDNLRWEGVPFILMSGK
ALDERVGYARILFKNQACCVQSEKHWAAAQSQCLPRQLVFHIGHGDLGSPAVLVSRNLFR
PSLPSSWKEMEGPPGLRLFGSPLSDYYAYSPVRERDAHSVLLSHIFHGRKNFFITTENLL
ASWNFWTPLLESLAHKAPRLYPGGAENGRLLDFEFSSGRLFFSQQQPEQLVPGPGPAPMP
SDFQVLRAKYRESPLVSAWSEELISKLANDIEATAVRAVRRFGQFHLALSGGSSPVALFQ
QLATAHYGFPWAHTHLWLVDERCVPLSDPESNFQGLQAHLLQHVRIPYYNIHPMPVHLQQ
RLCAEEDQGAQIYAREISALVANSSFDLVLLGMGADGHTASLFPQSPTGLDGEQLVVLTT
SPSQPHRRMSLSLPLINRAKKVAVLVMGRMKREITTLVSRVGHEPKKWPISGVLPHSGQL
VWYMDYDAFLG
Function
Bifunctional enzyme localized in the lumen of the endoplasmic reticulum that catalyzes the first two steps of the oxidative branch of the pentose phosphate pathway/shunt, an alternative to glycolysis and a major source of reducing power and metabolic intermediates for biosynthetic processes. Has a hexose-6-phosphate dehydrogenase activity, with broad substrate specificity compared to glucose-6-phosphate 1-dehydrogenase/G6PD, and catalyzes the first step of the pentose phosphate pathway. In addition, acts as a 6-phosphogluconolactonase and catalyzes the second step of the pentose phosphate pathway. May have a dehydrogenase activity for alternative substrates including glucosamine 6-phosphate and glucose 6-sulfate. The main function of this enzyme is to provide reducing equivalents such as NADPH to maintain the adequate levels of reductive cofactors in the oxidizing environment of the endoplasmic reticulum. By producing NADPH that is needed by reductases of the lumen of the endoplasmic reticulum like corticosteroid 11-beta-dehydrogenase isozyme 1/HSD11B1, indirectly regulates their activity.
Tissue Specificity Present in most tissues examined, strongest in liver.
KEGG Pathway
Pentose phosphate pathway (hsa00030 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
BioCyc Pathway
MetaCyc:HS00614-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

30 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
B-cell neoplasm DISVY326 Definitive Altered Expression [1]
Central diabetes insipidus DISJ4P9O Definitive Biomarker [2]
Hyperinsulinemic hypoglycemia DIS3KP5D Definitive Biomarker [3]
Leishmaniasis DISABTW7 Definitive Altered Expression [4]
Multiple sclerosis DISB2WZI Definitive Biomarker [5]
Primary hyperoxaluria DIS0L16N Definitive Biomarker [6]
Advanced cancer DISAT1Z9 Strong Biomarker [7]
Arteriosclerosis DISK5QGC Strong Biomarker [8]
Atherosclerosis DISMN9J3 Strong Biomarker [8]
Beta thalassemia DIS5RCQK Strong Altered Expression [9]
Beta-thalassemia major DISW06BV Strong Altered Expression [9]
Breast neoplasm DISNGJLM Strong Biomarker [7]
Cardiovascular disease DIS2IQDX Strong Genetic Variation [8]
Colorectal neoplasm DISR1UCN Strong Altered Expression [10]
Cone-rod dystrophy 2 DISX2RWY Strong Genetic Variation [11]
Cortisone reductase deficiency 1 DISKWH38 Strong Autosomal recessive [12]
Fatty liver disease DIS485QZ Strong Altered Expression [13]
Giardiasis DISWUNWK Strong Genetic Variation [14]
Hypoglycemia DISRCKR7 Strong Genetic Variation [15]
Intrahepatic cholangiocarcinoma DIS6GOC8 Strong Biomarker [16]
Obesity DIS47Y1K Strong Altered Expression [17]
Fetal growth restriction DIS5WEJ5 moderate Altered Expression [18]
Type-1/2 diabetes DISIUHAP moderate Altered Expression [17]
Cortisone reductase deficiency DIS88XDM Supportive Autosomal dominant [19]
Neoplasm DISZKGEW Disputed Altered Expression [20]
Breast cancer DIS7DPX1 Limited Altered Expression [20]
Breast carcinoma DIS2UE88 Limited Altered Expression [20]
Hemolytic anemia DIS803XQ Limited Biomarker [21]
Hyperinsulinemia DISIDWT6 Limited Altered Expression [17]
Malaria DISQ9Y50 Limited Biomarker [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of GDH/6PGL endoplasmic bifunctional protein (H6PD). [23]
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of GDH/6PGL endoplasmic bifunctional protein (H6PD). [28]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of GDH/6PGL endoplasmic bifunctional protein (H6PD). [36]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [24]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [25]
Estradiol DMUNTE3 Approved Estradiol affects the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [26]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [27]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [29]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [30]
Testosterone DM7HUNW Approved Testosterone increases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [31]
Selenium DM25CGV Approved Selenium increases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [32]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [33]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [34]
Zidovudine DM4KI7O Approved Zidovudine affects the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [35]
Hydrocortisone DMGEMB7 Approved Hydrocortisone increases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [31]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [32]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [37]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [38]
4-hydroxy-2-nonenal DM2LJFZ Investigative 4-hydroxy-2-nonenal decreases the activity of GDH/6PGL endoplasmic bifunctional protein (H6PD). [39]
CH-223191 DMMJZYC Investigative CH-223191 increases the expression of GDH/6PGL endoplasmic bifunctional protein (H6PD). [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)

References

1 Detection of cyclin D1 overexpression by real-time reverse-transcriptase-mediated quantitative polymerase chain reaction for the diagnosis of mantle cell lymphoma.Am J Pathol. 2001 Aug;159(2):425-9. doi: 10.1016/S0002-9440(10)61713-0.
2 A two-step approach improves the diagnosis of Clostridium difficile infection.J Microbiol Methods. 2017 Dec;143:17-19. doi: 10.1016/j.mimet.2017.09.015. Epub 2017 Sep 29.
3 Leucine-sensitive hyperinsulinaemic hypoglycaemia in patients with loss of function mutations in 3-Hydroxyacyl-CoA Dehydrogenase.Orphanet J Rare Dis. 2012 May 14;7:25. doi: 10.1186/1750-1172-7-25.
4 Glucose-6-phosphate dehydrogenase (G6PD) activity can modulate macrophage response to Leishmania major infection.Int Immunopharmacol. 2019 Apr;69:178-183. doi: 10.1016/j.intimp.2019.01.028. Epub 2019 Feb 1.
5 Hexose-6-phosphate dehydrogenase: a new risk gene for multiple sclerosis.Eur J Hum Genet. 2010 May;18(5):618-20. doi: 10.1038/ejhg.2009.213. Epub 2009 Nov 25.
6 Primary hyperoxaluria type 2: enzymology.J Nephrol. 1998 Mar-Apr;11 Suppl 1:29-31.
7 Hexose-6-phosphate dehydrogenase controls cancer cell proliferation and migration through pleiotropic effects on the unfolded-protein response, calcium homeostasis, and redox balance.FASEB J. 2018 May;32(5):2690-2705. doi: 10.1096/fj.201700870RR. Epub 2018 Jan 2.
8 Genotype at the P554L variant of the hexose-6 phosphate dehydrogenase gene is associated with carotid intima-medial thickness.PLoS One. 2011;6(8):e23248. doi: 10.1371/journal.pone.0023248. Epub 2011 Aug 12.
9 Glycerol-3-phosphate dehydrogenase activity in the red cells of patients with thalassemia.Blood. 1980 Apr;55(4):564-9.
10 A quantitative RT-PCR method to determine topoisomerase I mRNA levels in human tissue samples.Clin Chem Lab Med. 2005;43(7):707-14. doi: 10.1515/CCLM.2005.120.
11 Novel H6PDH mutations in two girls with premature adrenarche: 'apparent' and 'true' CRD can be differentiated by urinary steroid profiling.Eur J Endocrinol. 2013 Feb 1;168(2):K19-26. doi: 10.1530/EJE-12-0628. Print 2013 Feb.
12 Hexose-6-phosphate dehydrogenase knock-out mice lack 11 beta-hydroxysteroid dehydrogenase type 1-mediated glucocorticoid generation. J Biol Chem. 2006 Mar 10;281(10):6546-51. doi: 10.1074/jbc.M512635200. Epub 2005 Dec 15.
13 Hepatic 11beta-HSD1 mRNA expression in fatty liver and nonalcoholic steatohepatitis.Clin Endocrinol (Oxf). 2009 Apr;70(4):554-60. doi: 10.1111/j.1365-2265.2008.03358.x.
14 A novel high-resolution multilocus sequence typing of Giardia intestinalis Assemblage A isolates reveals zoonotic transmission, clonal outbreaks and recombination.Infect Genet Evol. 2018 Jun;60:7-16. doi: 10.1016/j.meegid.2018.02.012. Epub 2018 Feb 10.
15 Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release.Diabetes. 2014 Dec;63(12):4218-29. doi: 10.2337/db14-0783. Epub 2014 Jul 14.
16 LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis.Oncotarget. 2017 Oct 19;8(69):113650-113661. doi: 10.18632/oncotarget.21922. eCollection 2017 Dec 26.
17 Lack of adipose-specific hexose-6-phosphate dehydrogenase causes inactivation of adipose glucocorticoids and improves metabolic phenotype in mice.Clin Sci (Lond). 2019 Nov 15;133(21):2189-2202. doi: 10.1042/CS20190679.
18 Expression of enzymes regulating placental ammonia homeostasis in human fetal growth restricted pregnancies.Placenta. 2009 Jul;30(7):607-12. doi: 10.1016/j.placenta.2009.05.005. Epub 2009 Jun 4.
19 Steroid biomarkers and genetic studies reveal inactivating mutations in hexose-6-phosphate dehydrogenase in patients with cortisone reductase deficiency. J Clin Endocrinol Metab. 2008 Oct;93(10):3827-32. doi: 10.1210/jc.2008-0743. Epub 2008 Jul 15.
20 Expression of Pentose Phosphate Pathway-Related Proteins in Breast Cancer.Dis Markers. 2018 Feb 25;2018:9369358. doi: 10.1155/2018/9369358. eCollection 2018.
21 Examination of Hydroxychloroquine Use and Hemolytic Anemia in G6PDH-Deficient Patients.Arthritis Care Res (Hoboken). 2018 Mar;70(3):481-485. doi: 10.1002/acr.23296. Epub 2018 Feb 9.
22 Analysis of the genetic variants of glucose-6-phosphate dehydrogenase in inhabitants of the 4th Nile cataract region in Sudan.Blood Cells Mol Dis. 2013 Feb;50(2):115-8. doi: 10.1016/j.bcmd.2012.10.003. Epub 2012 Nov 10.
23 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
24 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
25 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
26 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
27 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
28 Inorganic arsenic as an endocrine disruptor: modulation of the glucocorticoid receptor pathway in placental cells via CpG methylation. Chem Res Toxicol. 2019 Mar 18;32(3):493-499.
29 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
30 Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016 Dec 13;7(50):83359-83377.
31 Testosterone stimulates adipose tissue 11beta-hydroxysteroid dehydrogenase type 1 expression in a depot-specific manner in children. J Clin Endocrinol Metab. 2010 Jul;95(7):3300-8.
32 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
33 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
34 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
35 Adipocyte differentiation, mitochondrial gene expression and fat distribution: differences between zidovudine and tenofovir after 6 months. Antivir Ther. 2009;14(8):1089-100. doi: 10.3851/IMP1457.
36 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
37 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
38 Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells. PLoS One. 2014 Jun 5;9(6):e98635.
39 Exposure to chrysotile asbestos causes carbonylation of glucose 6-phosphate dehydrogenase through a reaction with lipid peroxidation products in human lung epithelial cells. Toxicol Lett. 2010 May 19;195(1):1-8. doi: 10.1016/j.toxlet.2010.03.001. Epub 2010 Mar 6.
40 Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett. 2018 Aug;292:162-174.