General Information of Drug Off-Target (DOT) (ID: OT0EICG3)

DOT Name Cysteine-rich protein 1 (CRIP1)
Synonyms CRP-1; Cysteine-rich heart protein; CRHP; hCRHP; Cysteine-rich intestinal protein; CRIP
Gene Name CRIP1
Related Disease
Colon cancer ( )
Colon carcinoma ( )
Hepatocellular carcinoma ( )
Acute myelogenous leukaemia ( )
Acute myocardial infarction ( )
Advanced cancer ( )
Bone osteosarcoma ( )
Cervical cancer ( )
Cervical carcinoma ( )
Colorectal carcinoma ( )
Epilepsy ( )
Metastatic malignant neoplasm ( )
Osteosarcoma ( )
Pulmonary fibrosis ( )
Schizophrenia ( )
Thyroid gland carcinoma ( )
Bacterial infection ( )
Hypoglycemia ( )
Stroke ( )
Asthma ( )
Breast cancer ( )
Breast carcinoma ( )
Neoplasm ( )
UniProt ID
CRIP1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00412
Sequence
MPKCPKCNKEVYFAERVTSLGKDWHRPCLKCEKCGKTLTSGGHAEHEGKPYCNHPCYAAM
FGPKGFGRGGAESHTFK
Function Seems to have a role in zinc absorption and may function as an intracellular zinc transport protein.

Molecular Interaction Atlas (MIA) of This DOT

23 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Colon cancer DISVC52G Definitive Altered Expression [1]
Colon carcinoma DISJYKUO Definitive Altered Expression [1]
Hepatocellular carcinoma DIS0J828 Definitive Biomarker [2]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [3]
Acute myocardial infarction DISE3HTG Strong Biomarker [4]
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Bone osteosarcoma DIST1004 Strong Biomarker [5]
Cervical cancer DISFSHPF Strong Biomarker [6]
Cervical carcinoma DIST4S00 Strong Biomarker [6]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [7]
Epilepsy DISBB28L Strong Biomarker [8]
Metastatic malignant neoplasm DIS86UK6 Strong Altered Expression [9]
Osteosarcoma DISLQ7E2 Strong Biomarker [5]
Pulmonary fibrosis DISQKVLA Strong Altered Expression [10]
Schizophrenia DISSRV2N Strong Biomarker [8]
Thyroid gland carcinoma DISMNGZ0 Strong Altered Expression [11]
Bacterial infection DIS5QJ9S moderate Biomarker [12]
Hypoglycemia DISRCKR7 moderate Biomarker [13]
Stroke DISX6UHX moderate Biomarker [14]
Asthma DISW9QNS Limited Altered Expression [15]
Breast cancer DIS7DPX1 Limited Biomarker [9]
Breast carcinoma DIS2UE88 Limited Biomarker [9]
Neoplasm DISZKGEW Limited Biomarker [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Cysteine-rich protein 1 (CRIP1). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Cysteine-rich protein 1 (CRIP1). [30]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Cysteine-rich protein 1 (CRIP1). [17]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Cysteine-rich protein 1 (CRIP1). [18]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Cysteine-rich protein 1 (CRIP1). [19]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Cysteine-rich protein 1 (CRIP1). [20]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Cysteine-rich protein 1 (CRIP1). [21]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Cysteine-rich protein 1 (CRIP1). [22]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Cysteine-rich protein 1 (CRIP1). [23]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Cysteine-rich protein 1 (CRIP1). [24]
Progesterone DMUY35B Approved Progesterone decreases the expression of Cysteine-rich protein 1 (CRIP1). [25]
Menadione DMSJDTY Approved Menadione affects the expression of Cysteine-rich protein 1 (CRIP1). [22]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Cysteine-rich protein 1 (CRIP1). [26]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Cysteine-rich protein 1 (CRIP1). [27]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Cysteine-rich protein 1 (CRIP1). [28]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Cysteine-rich protein 1 (CRIP1). [26]
Lithium DMZ3OU6 Phase 2 Lithium increases the expression of Cysteine-rich protein 1 (CRIP1). [29]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Cysteine-rich protein 1 (CRIP1). [31]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Cysteine-rich protein 1 (CRIP1). [32]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Cysteine-rich protein 1 (CRIP1). [33]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Cysteine-rich protein 1 (CRIP1). [34]
Phencyclidine DMQBEYX Investigative Phencyclidine decreases the expression of Cysteine-rich protein 1 (CRIP1). [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 Cysteine-Rich Intestinal Protein 1 Silencing Inhibits Migration and Invasion in Human Colorectal Cancer.Cell Physiol Biochem. 2017;44(3):897-906. doi: 10.1159/000485357. Epub 2017 Nov 24.
2 C-reactive protein is an independent predictor for hepatocellular carcinoma recurrence after liver transplantation.PLoS One. 2019 May 29;14(5):e0216677. doi: 10.1371/journal.pone.0216677. eCollection 2019.
3 Weighted Gene Coexpression Network Analysis Identifies Cysteine-Rich Intestinal Protein 1 (CRIP1) as a Prognostic Gene Associated with Relapse in Patients with Acute Myeloid Leukemia.Med Sci Monit. 2019 Oct 2;25:7396-7406. doi: 10.12659/MSM.918092.
4 Selenoprotein P in Myocardial Infarction With Cardiogenic Shock.Shock. 2020 Jan;53(1):58-62. doi: 10.1097/SHK.0000000000001342.
5 CRIP1 expression is correlated with a favorable outcome and less metastases in osteosarcoma patients.Oncotarget. 2011 Dec;2(12):970-5. doi: 10.18632/oncotarget.398.
6 CRIP1 promotes cell migration, invasion and epithelial-mesenchymal transition of cervical cancer by activating the Wnt/catenin signaling pathway.Life Sci. 2018 Aug 15;207:420-427. doi: 10.1016/j.lfs.2018.05.054. Epub 2018 Jun 26.
7 Cysteine-rich intestinal protein 1 suppresses apoptosis and chemosensitivity to 5-fluorouracil in colorectal cancer through ubiquitin-mediated Fas degradation.J Exp Clin Cancer Res. 2019 Mar 8;38(1):120. doi: 10.1186/s13046-019-1117-z.
8 Cannabinoid Receptor Interacting Protein 1a (CRIP1a): Function and Structure.Molecules. 2019 Oct 12;24(20):3672. doi: 10.3390/molecules24203672.
9 The impact of cysteine-rich intestinal protein 1 (CRIP1) in human breast cancer.Mol Cancer. 2013 Apr 9;12:28. doi: 10.1186/1476-4598-12-28.
10 Cysteine-rich protein 1 is regulated by transforming growth factor-1 and expressed in lung fibrosis.J Cell Physiol. 2012 Jun;227(6):2605-12. doi: 10.1002/jcp.23000.
11 The Impact of Cysteine-Rich Intestinal Protein 1 (CRIP1) on Thyroid Carcinoma.Cell Physiol Biochem. 2017;43(5):2037-2046. doi: 10.1159/000484184. Epub 2017 Oct 23.
12 Neutralization of viral infectivity by zebrafish c-reactive protein isoforms.Mol Immunol. 2017 Nov;91:145-155. doi: 10.1016/j.molimm.2017.09.005. Epub 2017 Sep 12.
13 Mechanisms of action of a carbohydrate-reduced, high-protein diet in reducing the risk of postprandial hypoglycemia after Roux-en-Y gastric bypass surgery.Am J Clin Nutr. 2019 Aug 1;110(2):296-304. doi: 10.1093/ajcn/nqy310.
14 Transcriptome-Wide Analysis Identifies Novel Associations With Blood Pressure.Hypertension. 2017 Oct;70(4):743-750. doi: 10.1161/HYPERTENSIONAHA.117.09458. Epub 2017 Aug 7.
15 DNA methylation profiles of airway epithelial cells and PBMCs from healthy, atopic and asthmatic children.PLoS One. 2012;7(9):e44213. doi: 10.1371/journal.pone.0044213. Epub 2012 Sep 6.
16 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
17 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
18 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
19 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
20 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
21 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
22 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
23 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
24 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
25 Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum Reprod. 2011 Jul;26(7):1813-25.
26 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
27 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
28 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
29 A genetic network model of cellular responses to lithium treatment and cocaine abuse in bipolar disorder. BMC Syst Biol. 2010 Nov 19;4:158. doi: 10.1186/1752-0509-4-158.
30 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
31 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
32 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
33 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
34 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
35 Differential response of Mono Mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environ Health Perspect. 2007 Sep;115(9):1325-32.