General Information of Drug Off-Target (DOT) (ID: OT301T1U)

DOT Name Serine/threonine-protein kinase Sgk1 (SGK1)
Synonyms EC 2.7.11.1; Serum/glucocorticoid-regulated kinase 1
Gene Name SGK1
UniProt ID
SGK1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2R5T; 3HDM; 3HDN; 7PUE
EC Number
2.7.11.1
Pfam ID
PF00069 ; PF00433
Sequence
MTVKTEAAKGTLTYSRMRGMVAILIAFMKQRRMGLNDFIQKIANNSYACKHPEVQSILKI
SQPQEPELMNANPSPPPSPSQQINLGPSSNPHAKPSDFHFLKVIGKGSFGKVLLARHKAE
EVFYAVKVLQKKAILKKKEEKHIMSERNVLLKNVKHPFLVGLHFSFQTADKLYFVLDYIN
GGELFYHLQRERCFLEPRARFYAAEIASALGYLHSLNIVYRDLKPENILLDSQGHIVLTD
FGLCKENIEHNSTTSTFCGTPEYLAPEVLHKQPYDRTVDWWCLGAVLYEMLYGLPPFYSR
NTAEMYDNILNKPLQLKPNITNSARHLLEGLLQKDRTKRLGAKDDFMEIKSHVFFSLINW
DDLINKKITPPFNPNVSGPNDLRHFDPEFTEEPVPNSIGKSPDSVLVTASVKEAAEAFLG
FSYAPPTDSFL
Function
Serine/threonine-protein kinase which is involved in the regulation of a wide variety of ion channels, membrane transporters, cellular enzymes, transcription factors, neuronal excitability, cell growth, proliferation, survival, migration and apoptosis. Plays an important role in cellular stress response. Contributes to regulation of renal Na(+) retention, renal K(+) elimination, salt appetite, gastric acid secretion, intestinal Na(+)/H(+) exchange and nutrient transport, insulin-dependent salt sensitivity of blood pressure, salt sensitivity of peripheral glucose uptake, cardiac repolarization and memory consolidation. Up-regulates Na(+) channels: SCNN1A/ENAC, SCN5A and ASIC1/ACCN2, K(+) channels: KCNJ1/ROMK1, KCNA1-5, KCNQ1-5 and KCNE1, epithelial Ca(2+) channels: TRPV5 and TRPV6, chloride channels: BSND, CLCN2 and CFTR, glutamate transporters: SLC1A3/EAAT1, SLC1A2 /EAAT2, SLC1A1/EAAT3, SLC1A6/EAAT4 and SLC1A7/EAAT5, amino acid transporters: SLC1A5/ASCT2, SLC38A1/SN1 and SLC6A19, creatine transporter: SLC6A8, Na(+)/dicarboxylate cotransporter: SLC13A2/NADC1, Na(+)-dependent phosphate cotransporter: SLC34A2/NAPI-2B, glutamate receptor: GRIK2/GLUR6. Up-regulates carriers: SLC9A3/NHE3, SLC12A1/NKCC2, SLC12A3/NCC, SLC5A3/SMIT, SLC2A1/GLUT1, SLC5A1/SGLT1 and SLC15A2/PEPT2. Regulates enzymes: GSK3A/B, PMM2 and Na(+)/K(+) ATPase, and transcription factors: CTNNB1 and nuclear factor NF-kappa-B. Stimulates sodium transport into epithelial cells by enhancing the stability and expression of SCNN1A/ENAC. This is achieved by phosphorylating the NEDD4L ubiquitin E3 ligase, promoting its interaction with 14-3-3 proteins, thereby preventing it from binding to SCNN1A/ENAC and targeting it for degradation. Regulates store-operated Ca(+2) entry (SOCE) by stimulating ORAI1 and STIM1. Regulates KCNJ1/ROMK1 directly via its phosphorylation or indirectly via increased interaction with SLC9A3R2/NHERF2. Phosphorylates MDM2 and activates MDM2-dependent ubiquitination of p53/TP53. Phosphorylates MAPT/TAU and mediates microtubule depolymerization and neurite formation in hippocampal neurons. Phosphorylates SLC2A4/GLUT4 and up-regulates its activity. Phosphorylates APBB1/FE65 and promotes its localization to the nucleus. Phosphorylates MAPK1/ERK2 and activates it by enhancing its interaction with MAP2K1/MEK1 and MAP2K2/MEK2. Phosphorylates FBXW7 and plays an inhibitory role in the NOTCH1 signaling. Phosphorylates FOXO1 resulting in its relocalization from the nucleus to the cytoplasm. Phosphorylates FOXO3, promoting its exit from the nucleus and interference with FOXO3-dependent transcription. Phosphorylates BRAF and MAP3K3/MEKK3 and inhibits their activity. Phosphorylates SLC9A3/NHE3 in response to dexamethasone, resulting in its activation and increased localization at the cell membrane. Phosphorylates CREB1. Necessary for vascular remodeling during angiogenesis. Sustained high levels and activity may contribute to conditions such as hypertension and diabetic nephropathy. Isoform 2 exhibited a greater effect on cell plasma membrane expression of SCNN1A/ENAC and Na(+) transport than isoform 1.
Tissue Specificity
Expressed in most tissues with highest levels in the pancreas, followed by placenta, kidney and lung. Isoform 2 is strongly expressed in brain and pancreas, weaker in heart, placenta, lung, liver and skeletal muscle.
KEGG Pathway
FoxO sig.ling pathway (hsa04068 )
Efferocytosis (hsa04148 )
mTOR sig.ling pathway (hsa04150 )
PI3K-Akt sig.ling pathway (hsa04151 )
Parathyroid hormone synthesis, secretion and action (hsa04928 )
Aldosterone-regulated sodium reabsorption (hsa04960 )
Reactome Pathway
Stimuli-sensing channels (R-HSA-2672351 )
Regulation of TP53 Degradation (R-HSA-6804757 )
Transcriptional Regulation by MECP2 (R-HSA-8986944 )
NGF-stimulated transcription (R-HSA-9031628 )
PIP3 activates AKT signaling (R-HSA-1257604 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
58 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [4]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [2]
Ivermectin DMDBX5F Approved Ivermectin increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [5]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [7]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [9]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [10]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [11]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [12]
Marinol DM70IK5 Approved Marinol decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [13]
Progesterone DMUY35B Approved Progesterone increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [14]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [15]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [16]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [17]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [18]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [15]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [19]
Irinotecan DMP6SC2 Approved Irinotecan increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [20]
Mitomycin DMH0ZJE Approved Mitomycin decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [21]
Melphalan DMOLNHF Approved Melphalan increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [22]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [23]
Pioglitazone DMKJ485 Approved Pioglitazone decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [24]
Acocantherin DM7JT24 Approved Acocantherin decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [25]
Lindane DMB8CNL Approved Lindane increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [23]
Colchicine DM2POTE Approved Colchicine decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [21]
Hydroxyurea DMOQVU9 Approved Hydroxyurea increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [26]
Estrone DM5T6US Approved Estrone increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [15]
Adenine DMZLHKJ Approved Adenine decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [21]
Mestranol DMG3F94 Approved Mestranol increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [15]
Spironolactone DM2AQ5N Approved Spironolactone increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [5]
Norethindrone DMTY169 Approved Norethindrone increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [5]
Cyproterone DMQXLD2 Approved Cyproterone increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [5]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [27]
Pregnenolone DM6VFO1 Phase 4 Pregnenolone increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [5]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [28]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [29]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [23]
HEXESTROL DM9AGWQ Withdrawn from market HEXESTROL increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [15]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [30]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [32]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [33]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [34]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [35]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [36]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [23]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [37]
Chlorpyrifos DMKPUI6 Investigative Chlorpyrifos increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [38]
Chrysin DM7V2LG Investigative Chrysin increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [5]
OXYBENZONE DMMZYX6 Investigative OXYBENZONE increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [5]
Daidzein DMRFTJX Investigative Daidzein increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [5]
2,6-Dihydroanthra/1,9-Cd/Pyrazol-6-One DMDN12L Investigative 2,6-Dihydroanthra/1,9-Cd/Pyrazol-6-One decreases the activity of Serine/threonine-protein kinase Sgk1 (SGK1). [39]
H-89 DM4RVGO Investigative H-89 decreases the activity of Serine/threonine-protein kinase Sgk1 (SGK1). [40]
Indirubin-3'-monoxime DMLRQH0 Investigative Indirubin-3'-monoxime decreases the activity of Serine/threonine-protein kinase Sgk1 (SGK1). [39]
ETHISTERONE DMDXRP1 Investigative ETHISTERONE increases the expression of Serine/threonine-protein kinase Sgk1 (SGK1). [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 58 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Serine/threonine-protein kinase Sgk1 (SGK1). [31]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 A Gene Expression Biomarker Identifies Chemical Modulators of Estrogen Receptor in an MCF-7 Microarray Compendium. Chem Res Toxicol. 2021 Feb 15;34(2):313-329. doi: 10.1021/acs.chemrestox.0c00243. Epub 2021 Jan 6.
6 Inorganic arsenic as an endocrine disruptor: modulation of the glucocorticoid receptor pathway in placental cells via CpG methylation. Chem Res Toxicol. 2019 Mar 18;32(3):493-499.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
9 Gene expression profile of multiple myeloma cell line treated by arsenic trioxide. J Huazhong Univ Sci Technolog Med Sci. 2007 Dec;27(6):646-9. doi: 10.1007/s11596-007-0606-z.
10 A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells. Arch Toxicol. 2018 Feb;92(2):935-951. doi: 10.1007/s00204-017-2102-y. Epub 2017 Nov 6.
11 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
12 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
13 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
14 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
15 Moving toward integrating gene expression profiling into high-throughput testing: a gene expression biomarker accurately predicts estrogen receptor alpha modulation in a microarray compendium. Toxicol Sci. 2016 May;151(1):88-103.
16 SGK1, a potential regulator of c-fms related breast cancer aggressiveness. Clin Exp Metastasis. 2004;21(6):477-83.
17 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
18 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
19 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
20 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
21 Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology. 2014 Jan 6;315:8-16. doi: 10.1016/j.tox.2013.10.009. Epub 2013 Nov 6.
22 Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One. 2012;7(2):e30758. doi: 10.1371/journal.pone.0030758. Epub 2012 Feb 17.
23 Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol. 2014 Mar;88(3):673-89.
24 Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol. 2020 Oct;34(10):e22547. doi: 10.1002/jbt.22547. Epub 2020 Jun 26.
25 Ouabain impairs cell migration, and invasion and alters gene expression of human osteosarcoma U-2 OS cells. Environ Toxicol. 2017 Nov;32(11):2400-2413. doi: 10.1002/tox.22453. Epub 2017 Aug 10.
26 Differential expression of TP53 associated genes in Fanconi anemia cells after mitomycin C and hydroxyurea treatment. Mutat Res. 2008 Oct 30;656(1-2):1-7.
27 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
28 Isoflavones suppress cyclic adenosine 3',5'-monophosphate regulatory element-mediated transcription in osteoblastic cell line. J Nutr Biochem. 2011 Sep;22(9):865-73. doi: 10.1016/j.jnutbio.2010.07.011. Epub 2010 Nov 6.
29 Expression of endogenous retroviruses reflects increased usage of atypical enhancers in T cells. EMBO J. 2019 Jun 17;38(12):e101107. doi: 10.15252/embj.2018101107. Epub 2019 May 8.
30 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
31 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
32 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
33 Identification of gene markers for formaldehyde exposure in humans. Environ Health Perspect. 2007 Oct;115(10):1460-6. doi: 10.1289/ehp.10180.
34 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
35 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
36 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
37 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
38 Successful validation of genomic biomarkers for human immunotoxicity in Jurkat T cells in vitro. J Appl Toxicol. 2015 Jul;35(7):831-41.
39 The specificities of protein kinase inhibitors: an update. Biochem J. 2003 Apr 1;371(Pt 1):199-204. doi: 10.1042/BJ20021535.
40 Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95-105.