General Information of Drug Off-Target (DOT) (ID: OT43LYEZ)

DOT Name Retinoid-inducible serine carboxypeptidase (SCPEP1)
Synonyms EC 3.4.16.-; Serine carboxypeptidase 1
Gene Name SCPEP1
Related Disease
Acute myelogenous leukaemia ( )
Breast cancer ( )
Chronic pancreatitis ( )
Clear cell renal carcinoma ( )
Depression ( )
High blood pressure ( )
Hyperglycemia ( )
Liver cancer ( )
Major depressive disorder ( )
Pancreatic cancer ( )
Plasma cell myeloma ( )
Precancerous condition ( )
Primary cutaneous T-cell lymphoma ( )
Progressive multifocal leukoencephalopathy ( )
Schizophrenia ( )
Bone osteosarcoma ( )
Breast carcinoma ( )
Hepatocellular carcinoma ( )
Osteosarcoma ( )
Testicular cancer ( )
Helicoid peripapillary chorioretinal degeneration ( )
Type-1/2 diabetes ( )
UniProt ID
RISC_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.4.16.-
Pfam ID
PF00450
Sequence
MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATN
SCKNFSELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGT
GFSYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLEL
YKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNA
VNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRH
VRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAG
INVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKN
LAFYWILKAGHMVPSDQGDMALKMMRLVTQQE
Function May be involved in vascular wall and kidney homeostasis.

Molecular Interaction Atlas (MIA) of This DOT

22 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [1]
Breast cancer DIS7DPX1 Strong Genetic Variation [2]
Chronic pancreatitis DISBUOMJ Strong Altered Expression [3]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [4]
Depression DIS3XJ69 Strong Biomarker [5]
High blood pressure DISY2OHH Strong Genetic Variation [6]
Hyperglycemia DIS0BZB5 Strong Biomarker [7]
Liver cancer DISDE4BI Strong Biomarker [8]
Major depressive disorder DIS4CL3X Strong Genetic Variation [5]
Pancreatic cancer DISJC981 Strong Biomarker [3]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [1]
Precancerous condition DISV06FL Strong Biomarker [3]
Primary cutaneous T-cell lymphoma DIS35WVW Strong Biomarker [9]
Progressive multifocal leukoencephalopathy DISX02WS Strong Biomarker [4]
Schizophrenia DISSRV2N Strong Genetic Variation [10]
Bone osteosarcoma DIST1004 moderate Genetic Variation [11]
Breast carcinoma DIS2UE88 moderate Biomarker [12]
Hepatocellular carcinoma DIS0J828 moderate Biomarker [13]
Osteosarcoma DISLQ7E2 moderate Genetic Variation [11]
Testicular cancer DIS6HNYO moderate Altered Expression [14]
Helicoid peripapillary chorioretinal degeneration DISFSS5N Limited Genetic Variation [15]
Type-1/2 diabetes DISIUHAP Limited Genetic Variation [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [17]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [18]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [19]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [20]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [21]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [22]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [23]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [24]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [25]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [26]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [27]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [28]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [29]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [30]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [32]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [33]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [34]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [35]
Lithium chloride DMHYLQ2 Investigative Lithium chloride increases the expression of Retinoid-inducible serine carboxypeptidase (SCPEP1). [36]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Retinoid-inducible serine carboxypeptidase (SCPEP1). [31]
------------------------------------------------------------------------------------

References

1 Expression of testicular genes in haematological malignancies.Br J Cancer. 1999 Dec;81(7):1162-4. doi: 10.1038/sj.bjc.6690824.
2 Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis.Cancer Cell. 2014 Nov 10;26(5):707-21. doi: 10.1016/j.ccell.2014.09.005. Epub 2014 Oct 23.
3 Expression of cancer testis antigens in pancreatic carcinoma cell lines, pancreatic adenocarcinoma and chronic pancreatitis.Int J Cancer. 2004 Apr 20;109(4):568-75. doi: 10.1002/ijc.20006.
4 SCP phosphatases suppress renal cell carcinoma by stabilizing PML and inhibiting mTOR/HIF signaling.Cancer Res. 2014 Dec 1;74(23):6935-46. doi: 10.1158/0008-5472.CAN-14-1330. Epub 2014 Oct 7.
5 Psychometric properties of the 10-item Connor-Davidson Resilience Scale (CD-RISC-10) in Chinese undergraduates and depressive patients.J Affect Disord. 2020 Jan 15;261:211-220. doi: 10.1016/j.jad.2019.10.018. Epub 2019 Oct 12.
6 Gamma-glutamyltransferase, fatty liver index and hepatic insulin resistance are associated with incident hypertension in two longitudinal studies.J Hypertens. 2017 Mar;35(3):493-500. doi: 10.1097/HJH.0000000000001204.
7 Physicochemical properties of polysaccharides separated from Camellia oleifera Abel seed cake and its hypoglycemic activity on streptozotocin-induced diabetic mice.Int J Biol Macromol. 2019 Mar 15;125:1075-1083. doi: 10.1016/j.ijbiomac.2018.12.059. Epub 2018 Dec 5.
8 SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62.Oncogene. 2016 Jan 28;35(4):491-500. doi: 10.1038/onc.2015.106. Epub 2015 Apr 20.
9 Expression of cancer/testis antigens in cutaneous T cell lymphomas.Int J Cancer. 2002 Feb 10;97(5):668-70. doi: 10.1002/ijc.1643.
10 Brain-behaviour relationships in people at high genetic risk of schizophrenia.Neuroimage. 2006 Oct 15;33(1):275-85. doi: 10.1016/j.neuroimage.2006.06.031. Epub 2006 Aug 22.
11 Polymorphisms in miRNA processing genes and their role in osteosarcoma risk.Pediatr Blood Cancer. 2015 May;62(5):766-9. doi: 10.1002/pbc.25416. Epub 2015 Feb 7.
12 Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12.Int J Cancer. 2015 Jan 1;136(1):44-54. doi: 10.1002/ijc.28960. Epub 2014 May 20.
13 Oncogenic Role of SND1 in Development and Progression of Hepatocellular Carcinoma.Cancer Res. 2017 Jun 15;77(12):3306-3316. doi: 10.1158/0008-5472.CAN-17-0298. Epub 2017 Apr 20.
14 Prospective study on the expression of cancer testis genes and antibody responses in 100 consecutive patients with primary breast cancer.Int J Cancer. 2006 Feb 1;118(3):696-703. doi: 10.1002/ijc.21352.
15 Cloning and characterization of the first serine carboxypeptidase from a plant parasitic nematode, Radopholus similis.Sci Rep. 2017 Jul 6;7(1):4815. doi: 10.1038/s41598-017-05093-7.
16 Insulin resistance and -cell function in smokers: results from the EGIR-RISC European multicentre study.Diabet Med. 2017 Feb;34(2):223-228. doi: 10.1111/dme.13172. Epub 2016 Jul 28.
17 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
18 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
19 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
20 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
21 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
22 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
23 Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol. 2005 Mar;128(5):636-44.
24 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
25 Gene microarray analysis of human renal cell carcinoma: the effects of HDAC inhibition and retinoid treatment. Cancer Biol Ther. 2008 Oct;7(10):1607-18.
26 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
27 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
28 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
29 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
30 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
31 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
32 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
33 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
34 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
35 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
36 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.