General Information of Drug Off-Target (DOT) (ID: OT4N5MDP)

DOT Name Spermidine synthase (SRM)
Synonyms SPDSY; EC 2.5.1.16; Putrescine aminopropyltransferase
Gene Name SRM
Related Disease
Alzheimer disease ( )
B-cell lymphoma ( )
Burkitt lymphoma ( )
Cardiac disease ( )
Cardiovascular disease ( )
Chagas disease ( )
Cryptococcosis ( )
Depression ( )
Hepatocellular carcinoma ( )
High blood pressure ( )
Lung adenocarcinoma ( )
Obsessive compulsive disorder ( )
Osteoporosis ( )
Schizophrenia ( )
Syndromic X-linked intellectual disability Snyder type ( )
Synovitis ( )
Age-related macular degeneration ( )
Prostate cancer ( )
Prostate carcinoma ( )
Advanced cancer ( )
Neoplasm ( )
Osteoarthritis ( )
UniProt ID
SPEE_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2O05; 2O06; 2O07; 2O0L; 3RW9
EC Number
2.5.1.16
Pfam ID
PF17284 ; PF01564
Sequence
MEPGPDGPAASGPAAIREGWFRETCSLWPGQALSLQVEQLLHHRRSRYQDILVFRSKTYG
NVLVLDGVIQCTERDEFSYQEMIANLPLCSHPNPRKVLIIGGGDGGVLREVVKHPSVESV
VQCEIDEDVIQVSKKFLPGMAIGYSSSKLTLHVGDGFEFMKQNQDAFDVIITDSSDPMGP
AESLFKESYYQLMKTALKEDGVLCCQGECQWLHLDLIKEMRQFCQSLFPVVAYAYCTIPT
YPSGQIGFMLCSKNPSTNFQEPVQPLTQQQVAQMQLKYYNSDVHRAAFVLPEFARKALND
VS
Function
Catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM). Has a strong preference for putrescine as substrate, and has very low activity towards 1,3-diaminopropane. Has extremely low activity towards spermidine.
KEGG Pathway
Cysteine and methionine metabolism (hsa00270 )
Arginine and proline metabolism (hsa00330 )
Glutathione metabolism (hsa00480 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Metabolism of polyamines (R-HSA-351202 )
BioCyc Pathway
MetaCyc:HS04027-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

22 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Alzheimer disease DISF8S70 Strong Biomarker [1]
B-cell lymphoma DISIH1YQ Strong Biomarker [2]
Burkitt lymphoma DIS9D5XU Strong Biomarker [2]
Cardiac disease DISVO1I5 Strong Biomarker [3]
Cardiovascular disease DIS2IQDX Strong Biomarker [4]
Chagas disease DIS8KNVF Strong Biomarker [5]
Cryptococcosis DISDYDTK Strong Biomarker [6]
Depression DIS3XJ69 Strong Genetic Variation [7]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [8]
High blood pressure DISY2OHH Strong Biomarker [9]
Lung adenocarcinoma DISD51WR Strong Biomarker [10]
Obsessive compulsive disorder DIS1ZMM2 Strong Biomarker [11]
Osteoporosis DISF2JE0 Strong Genetic Variation [12]
Schizophrenia DISSRV2N Strong Biomarker [13]
Syndromic X-linked intellectual disability Snyder type DISN836E Strong Genetic Variation [12]
Synovitis DISW2GPY Strong Biomarker [14]
Age-related macular degeneration DIS0XS2C moderate Biomarker [15]
Prostate cancer DISF190Y moderate Biomarker [16]
Prostate carcinoma DISMJPLE moderate Biomarker [16]
Advanced cancer DISAT1Z9 Limited Biomarker [17]
Neoplasm DISZKGEW Limited Altered Expression [18]
Osteoarthritis DIS05URM Limited Biomarker [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Spermidine synthase (SRM). [20]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Spermidine synthase (SRM). [34]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Spermidine synthase (SRM). [35]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Spermidine synthase (SRM). [36]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Spermidine synthase (SRM). [21]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Spermidine synthase (SRM). [22]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Spermidine synthase (SRM). [23]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Spermidine synthase (SRM). [24]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Spermidine synthase (SRM). [25]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Spermidine synthase (SRM). [26]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Spermidine synthase (SRM). [27]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Spermidine synthase (SRM). [22]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Spermidine synthase (SRM). [28]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Spermidine synthase (SRM). [29]
Ethanol DMDRQZU Approved Ethanol decreases the expression of Spermidine synthase (SRM). [30]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Spermidine synthase (SRM). [31]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Spermidine synthase (SRM). [25]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Spermidine synthase (SRM). [32]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Spermidine synthase (SRM). [33]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Spermidine synthase (SRM). [37]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 A randomised double-blind placebo-controlled pilot trial of a combined extract of sage, rosemary and melissa, traditional herbal medicines, on the enhancement of memory in normal healthy subjects, including influence of age.Phytomedicine. 2018 Jan 15;39:42-48. doi: 10.1016/j.phymed.2017.08.015. Epub 2017 Aug 18.
2 Molecular signatures that can be transferred across different omics platforms.Bioinformatics. 2017 Jul 15;33(14):i333-i340. doi: 10.1093/bioinformatics/btx241.
3 Post-translational quantitation by SRM/MRM: applications in cardiology.Expert Rev Proteomics. 2018 Jun;15(6):477-502. doi: 10.1080/14789450.2018.1484283.
4 The development of SRM assays is transforming proteomics research.Proteomics. 2017 Apr;17(7). doi: 10.1002/pmic.201600366. Epub 2016 Nov 30.
5 In silico, in vitro, X-ray crystallography, and integrated strategies for discovering spermidine synthase inhibitors for Chagas disease.Sci Rep. 2017 Jul 27;7(1):6666. doi: 10.1038/s41598-017-06411-9.
6 Novel chimeric spermidine synthase-saccharopine dehydrogenase gene (SPE3-LYS9) in the human pathogen Cryptococcus neoformans.Eukaryot Cell. 2004 Jun;3(3):752-63. doi: 10.1128/EC.3.3.752-763.2004.
7 Short-Term Effects of a Multimodal 3-Week Inpatient Pulmonary Rehabilitation Programme for Patients with Sarcoidosis: The ProKaSaRe Study.Respiration. 2018;95(5):343-353. doi: 10.1159/000486964. Epub 2018 Feb 27.
8 Fully validated SRM-MS-based method for absolute quantification of PIVKA-II in human serum: Clinical applications for patients with HCC.J Pharm Biomed Anal. 2018 Jul 15;156:142-146. doi: 10.1016/j.jpba.2018.04.025. Epub 2018 Apr 21.
9 Development of WNK signaling inhibitors as a new class of antihypertensive drugs.Bioorg Med Chem. 2017 Jul 15;25(14):3845-3852. doi: 10.1016/j.bmc.2017.05.034. Epub 2017 May 19.
10 c-Myc targeted regulators of cell metabolism in a transgenic mouse model of papillary lung adenocarcinoma.Oncotarget. 2016 Oct 4;7(40):65514-65539. doi: 10.18632/oncotarget.11804.
11 The role of spatial store and executive strategy in spatial working memory: a comparison between patients with obsessive-compulsive disorder and controls.Cogn Neuropsychiatry. 2019 Jan;24(1):14-27. doi: 10.1080/13546805.2018.1544888. Epub 2018 Nov 21.
12 Modeling Snyder-Robinson Syndrome in multipotent stromal cells reveals impaired mitochondrial function as a potential cause for deficient osteogenesis.Sci Rep. 2019 Oct 28;9(1):15395. doi: 10.1038/s41598-019-51868-5.
13 Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients.J Proteome Res. 2019 Dec 6;18(12):4240-4253. doi: 10.1021/acs.jproteome.9b00398. Epub 2019 Oct 28.
14 The value of the simplified RAMRIS-5 in early RA patients under methotrexate therapy using high-field MRI.Arthritis Res Ther. 2019 Jan 14;21(1):21. doi: 10.1186/s13075-018-1789-3.
15 A novel, multiplexed targeted mass spectrometry assay for quantification of complement factor H (CFH) variants and CFH-related proteins 1-5 in human plasma.Proteomics. 2017 Mar;17(6):10.1002/pmic.201600237. doi: 10.1002/pmic.201600237.
16 Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics.J Transl Med. 2017 Aug 15;15(1):175. doi: 10.1186/s12967-017-1276-7.
17 Clinical potential of mass spectrometry-based proteogenomics.Nat Rev Clin Oncol. 2019 Apr;16(4):256-268. doi: 10.1038/s41571-018-0135-7.
18 Mass-spectrometry-based quantitation of Her2 in gastroesophageal tumor tissue: comparison to IHC and FISH.Gastric Cancer. 2016 Oct;19(4):1066-1079. doi: 10.1007/s10120-015-0566-0. Epub 2015 Nov 18.
19 Particulate matter exposure aggravates osteoarthritis severity.Clin Sci (Lond). 2019 Nov 15;133(21):2171-2187. doi: 10.1042/CS20190458.
20 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
21 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
22 Comparison of the gene expression profiles of monocytic versus granulocytic lineages of HL-60 leukemia cell differentiation by DNA microarray analysis. Life Sci. 2003 Aug 15;73(13):1705-19. doi: 10.1016/s0024-3205(03)00515-0.
23 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
24 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
25 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
26 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
27 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
28 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
29 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
30 Effects of acute ethanol treatment on NCCIT cells and NCCIT cell-derived embryoid bodies (EBs). Toxicol In Vitro. 2010 Sep;24(6):1696-704. doi: 10.1016/j.tiv.2010.05.017. Epub 2010 May 26.
31 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
32 Chemopreventive mechanisms of methionine on inhibition of benzo(a)pyrene-DNA adducts formation in human hepatocellular carcinoma HepG2 cells. Toxicol Lett. 2012 Feb 5;208(3):232-8.
33 BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011 Sep 16;146(6):904-17.
34 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
35 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
36 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
37 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.