General Information of Drug Off-Target (DOT) (ID: OT6QTX7R)

DOT Name Low density lipoprotein receptor adapter protein 1 (LDLRAP1)
Synonyms Autosomal recessive hypercholesterolemia protein
Gene Name LDLRAP1
Related Disease
Hypercholesterolemia, familial, 4 ( )
Plasma cell neoplasm ( )
Severe combined immunodeficiency ( )
Advanced cancer ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Epithelial ovarian cancer ( )
Familial hypercholesterolemia ( )
Hepatitis C virus infection ( )
Hypercholesterolemia, familial, 1 ( )
Lipid metabolism disorder ( )
Myocardial infarction ( )
Neoplasm ( )
Plasma cell myeloma ( )
Vibrio cholerae infection ( )
Homozygous familial hypercholesterolemia ( )
Colorectal carcinoma ( )
Cardiomyopathy ( )
UniProt ID
ARH_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2G30
Pfam ID
PF00640
Sequence
MDALKSAGRALIRSPSLAKQSWGGGGRHRKLPENWTDTRETLLEGMLFSLKYLGMTLVEQ
PKGEELSAAAIKRIVATAKASGKKLQKVTLKVSPRGIILTDNLTNQLIENVSIYRISYCT
ADKMHDKVFAYIAQSQHNQSLECHAFLCTKRKMAQAVTLTVAQAFKVAFEFWQVSKEEKE
KRDKASQEGGDVLGARQDCTPSLKSLVATGNLLDLEETAKAPLSTVSANTTNMDEVPRPQ
ALSGSSVVWELDDGLDEAFSRLAQSRTNPQVLDTGLTAQDMHYAQCLSPVDWDKPDSSGT
EQDDLFSF
Function
Adapter protein (clathrin-associated sorting protein (CLASP)) required for efficient endocytosis of the LDL receptor (LDLR) in polarized cells such as hepatocytes and lymphocytes, but not in non-polarized cells (fibroblasts). May be required for LDL binding and internalization but not for receptor clustering in coated pits. May facilitate the endocytosis of LDLR and LDLR-LDL complexes from coated pits by stabilizing the interaction between the receptor and the structural components of the pits. May also be involved in the internalization of other LDLR family members. Binds to phosphoinositides, which regulate clathrin bud assembly at the cell surface. Required for trafficking of LRP2 to the endocytic recycling compartment which is necessary for LRP2 proteolysis, releasing a tail fragment which translocates to the nucleus and mediates transcriptional repression.
Tissue Specificity Expressed at high levels in the kidney, liver, and placenta, with lower levels detectable in brain, heart, muscle, colon, spleen, intestine, lung, and leukocytes.
KEGG Pathway
Endocytosis (hsa04144 )
Cholesterol metabolism (hsa04979 )
Reactome Pathway
Cargo recognition for clathrin-mediated endocytosis (R-HSA-8856825 )
Clathrin-mediated endocytosis (R-HSA-8856828 )
Chylomicron clearance (R-HSA-8964026 )
LDL clearance (R-HSA-8964038 )
Transport of RCbl within the body (R-HSA-9758890 )
Vitamin D (calciferol) metabolism (R-HSA-196791 )

Molecular Interaction Atlas (MIA) of This DOT

18 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hypercholesterolemia, familial, 4 DISFLNLI Definitive Autosomal recessive [1]
Plasma cell neoplasm DIS2PJJM Definitive Biomarker [2]
Severe combined immunodeficiency DIS6MF4Q Definitive Biomarker [2]
Advanced cancer DISAT1Z9 Strong Altered Expression [3]
Arteriosclerosis DISK5QGC Strong Biomarker [4]
Atherosclerosis DISMN9J3 Strong Genetic Variation [5]
Epithelial ovarian cancer DIS56MH2 Strong Altered Expression [6]
Familial hypercholesterolemia DISC06IX Strong Genetic Variation [7]
Hepatitis C virus infection DISQ0M8R Strong Genetic Variation [8]
Hypercholesterolemia, familial, 1 DISU411W Strong Genetic Variation [7]
Lipid metabolism disorder DISEOA7S Strong Genetic Variation [9]
Myocardial infarction DIS655KI Strong Genetic Variation [10]
Neoplasm DISZKGEW Strong Biomarker [11]
Plasma cell myeloma DIS0DFZ0 Strong Altered Expression [11]
Vibrio cholerae infection DISW7E3U Strong Biomarker [12]
Homozygous familial hypercholesterolemia DISRCNCF Supportive Autosomal recessive [13]
Colorectal carcinoma DIS5PYL0 Disputed Biomarker [14]
Cardiomyopathy DISUPZRG Limited Biomarker [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [16]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [17]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [18]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [19]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [20]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [22]
Marinol DM70IK5 Approved Marinol increases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [23]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [24]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [25]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [27]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [28]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [24]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [21]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Low density lipoprotein receptor adapter protein 1 (LDLRAP1). [26]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Heterotransplantation of human multiple myeloma cell lines in severe combined immunodeficiency (SCID) mice.Anticancer Res. 1993 May-Jun;13(3):593-7.
3 Efficacy and Mechanism of Antitumor Activity of an Antibody Targeting Transferrin Receptor 1 in Mouse Models of Human Multiple Myeloma.J Immunol. 2018 May 15;200(10):3485-3494. doi: 10.4049/jimmunol.1700787. Epub 2018 Apr 13.
4 Premature senescence in cells from patients with autosomal recessive hypercholesterolemia (ARH): evidence for a role for ARH in mitosis.Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2270-7. doi: 10.1161/ATVBAHA.111.232223. Epub 2011 Jul 21.
5 Autosomal recessive hypercholesterolemia: Case report.J Clin Lipidol. 2019 Nov-Dec;13(6):887-893. doi: 10.1016/j.jacl.2019.09.009. Epub 2019 Sep 23.
6 EZH2-induced H3K27me3 is associated with epigenetic repression of the ARHI tumor-suppressor gene in ovarian cancer.Cell Biochem Biophys. 2015 Jan;71(1):105-12. doi: 10.1007/s12013-014-0168-1.
7 A review of gene- and cell-based therapies for familial hypercholesterolemia.Pharmacol Res. 2019 May;143:119-132. doi: 10.1016/j.phrs.2019.03.016. Epub 2019 Mar 22.
8 Genetic markers of lipid metabolism genes associated with low susceptibility to HCV infection.Sci Rep. 2019 Jun 21;9(1):9054. doi: 10.1038/s41598-019-45389-4.
9 Genetic epidemiology of autosomal recessive hypercholesterolemia in Sicily: Identification by next-generation sequencing of a new kindred.J Clin Lipidol. 2018 Jan-Feb;12(1):145-151. doi: 10.1016/j.jacl.2017.10.014. Epub 2017 Oct 27.
10 Effects of familial hypercholesterolemia-associated genes on the phenotype of premature myocardial infarction.Lipids Health Dis. 2019 Apr 11;18(1):95. doi: 10.1186/s12944-019-1042-3.
11 An IgG1 Version of the Anti-transferrin Receptor 1 Antibody ch128.1 Shows Significant Antitumor Activity Against Different Xenograft Models of Multiple Myeloma: A Brief Communication.J Immunother. 2020 Feb/Mar;43(2):48-52. doi: 10.1097/CJI.0000000000000304.
12 Enhanced sensitivity to cholera toxin in female ADP-ribosylarginine hydrolase (ARH1)-deficient mice.PLoS One. 2018 Nov 30;13(11):e0207693. doi: 10.1371/journal.pone.0207693. eCollection 2018.
13 Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science. 2001 May 18;292(5520):1394-8. doi: 10.1126/science.1060458. Epub 2001 Apr 26.
14 Prognostic significance of the detection of peripheral blood CEACAM5mRNA-positive cells by real-time polymerase chain reaction in operable colorectal cancer.Clin Cancer Res. 2011 Jan 1;17(1):165-73. doi: 10.1158/1078-0432.CCR-10-0565. Epub 2010 Nov 11.
15 Role of a TRIM72 ADP-ribosylation cycle in myocardial injury and membrane repair.JCI Insight. 2018 Nov 15;3(22):e97898. doi: 10.1172/jci.insight.97898.
16 Integrated 'omics analysis reveals new drug-induced mitochondrial perturbations in human hepatocytes. Toxicol Lett. 2018 Jun 1;289:1-13.
17 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
18 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
19 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
20 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
21 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
22 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
23 Single-cell Transcriptome Mapping Identifies Common and Cell-type Specific Genes Affected by Acute Delta9-tetrahydrocannabinol in Humans. Sci Rep. 2020 Feb 26;10(1):3450. doi: 10.1038/s41598-020-59827-1.
24 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
25 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
26 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
27 Isobaric tags for relative and absolute quantitation-based proteomics analysis of the effect of ginger oil on bisphenol A-induced breast cancer cell proliferation. Oncol Lett. 2021 Feb;21(2):101. doi: 10.3892/ol.2020.12362. Epub 2020 Dec 8.
28 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
29 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.