General Information of Drug Off-Target (DOT) (ID: OTAYHG9C)

DOT Name Lanosterol 14-alpha demethylase (CYP51A1)
Synonyms LDM; EC 1.14.14.154; CYPLI; Cytochrome P450 51A1; CYP51A1; Cytochrome P450-14DM; Cytochrome P45014DM; Cytochrome P450LI; Sterol 14-alpha demethylase
Gene Name CYP51A1
UniProt ID
CP51A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3JUS; 3JUV; 3LD6; 4UHI; 4UHL; 6Q2T; 6UEZ; 8SBI
EC Number
1.14.14.154
Pfam ID
PF00067
Sequence
MAAAAGMLLLGLLQAGGSVLGQAMEKVTGGNLLSMLLIACAFTLSLVYLIRLAAGHLVQL
PAGVKSPPYIFSPIPFLGHAIAFGKSPIEFLENAYEKYGPVFSFTMVGKTFTYLLGSDAA
ALLFNSKNEDLNAEDVYSRLTTPVFGKGVAYDVPNPVFLEQKKMLKSGLNIAHFKQHVSI
IEKETKEYFESWGESGEKNVFEALSELIILTASHCLHGKEIRSQLNEKVAQLYADLDGGF
SHAAWLLPGWLPLPSFRRRDRAHREIKDIFYKAIQKRRQSQEKIDDILQTLLDATYKDGR
PLTDDEVAGMLIGLLLAGQHTSSTTSAWMGFFLARDKTLQKKCYLEQKTVCGENLPPLTY
DQLKDLNLLDRCIKETLRLRPPIMIMMRMARTPQTVAGYTIPPGHQVCVSPTVNQRLKDS
WVERLDFNPDRYLQDNPASGEKFAYVPFGAGRHRCIGENFAYVQIKTIWSTMLRLYEFDL
IDGYFPTVNYTTMIHTPENPVIRYKRRSK
Function
Sterol 14alpha-demethylase that plays a critical role in the cholesterol biosynthesis pathway, being cholesterol the major sterol component in mammalian membranes as well as a precursor for bile acid and steroid hormone synthesis. Cytochrome P450 monooxygenase that catalyzes the three-step oxidative removal of the 14alpha-methyl group (C-32) of sterols such as lanosterol (lanosta-8,24-dien-3beta-ol) and 24,25-dihydrolanosterol (DHL) in the form of formate, and converts the sterols to 4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol and 4,4-dimethyl-8,14-cholestadien-3beta-ol, respectively, which are intermediates of cholesterol biosynthesis. Can also demethylate substrates not intrinsic to mammals, such as eburicol (24-methylene-24,25-dihydrolanosterol), but at a lower rate than DHL.
Tissue Specificity Ubiquitously expressed with highest levels in testis, ovary, adrenal, prostate, liver, kidney and lung.
KEGG Pathway
Steroid biosynthesis (hsa00100 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Endogenous sterols (R-HSA-211976 )
Activation of gene expression by SREBF (SREBP) (R-HSA-2426168 )
EGR2 and SOX10-mediated initiation of Schwann cell myelination (R-HSA-9619665 )
Cholesterol biosynthesis (R-HSA-191273 )
BioCyc Pathway
MetaCyc:HS00076-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 7 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Lanosterol 14-alpha demethylase (CYP51A1) affects the response to substance of Fluorouracil. [28]
Clotrimazole DMMFCIH Approved Lanosterol 14-alpha demethylase (CYP51A1) decreases the response to substance of Clotrimazole. [29]
Miconazole DMPMYE8 Approved Lanosterol 14-alpha demethylase (CYP51A1) decreases the response to substance of Miconazole. [29]
Itraconazole DMCR1MV Approved Lanosterol 14-alpha demethylase (CYP51A1) decreases the response to substance of Itraconazole. [29]
Fluconazole DMOWZ6B Approved Lanosterol 14-alpha demethylase (CYP51A1) decreases the response to substance of Fluconazole. [29]
Voriconazole DMAOL2S Approved Lanosterol 14-alpha demethylase (CYP51A1) decreases the response to substance of Voriconazole. [29]
Econazole DMFSWGH Approved Lanosterol 14-alpha demethylase (CYP51A1) decreases the response to substance of Econazole. [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Dihydrolanosterol DMG0PXI Investigative Lanosterol 14-alpha demethylase (CYP51A1) decreases the abundance of Dihydrolanosterol. [30]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Lanosterol 14-alpha demethylase (CYP51A1). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Lanosterol 14-alpha demethylase (CYP51A1). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Lanosterol 14-alpha demethylase (CYP51A1). [21]
------------------------------------------------------------------------------------
28 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [5]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of Lanosterol 14-alpha demethylase (CYP51A1). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [7]
Ivermectin DMDBX5F Approved Ivermectin increases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [10]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Lanosterol 14-alpha demethylase (CYP51A1). [12]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [13]
Marinol DM70IK5 Approved Marinol decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [14]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [15]
Progesterone DMUY35B Approved Progesterone increases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [16]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [17]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [18]
Letrozole DMH07Y3 Approved Letrozole decreases the activity of Lanosterol 14-alpha demethylase (CYP51A1). [19]
FADROZOLE DM3C5GZ Approved FADROZOLE decreases the activity of Lanosterol 14-alpha demethylase (CYP51A1). [19]
Bifonazole DM3KN7V Approved Bifonazole decreases the activity of Lanosterol 14-alpha demethylase (CYP51A1). [19]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [20]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [22]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [24]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [25]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [26]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [7]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [10]
PP-242 DM2348V Investigative PP-242 decreases the expression of Lanosterol 14-alpha demethylase (CYP51A1). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
7 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
13 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
14 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
15 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
16 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
17 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
18 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
19 Comparison of lanosterol-14 alpha-demethylase (CYP51) of human and Candida albicans for inhibition by different antifungal azoles. Toxicology. 2006 Nov 10;228(1):24-32. doi: 10.1016/j.tox.2006.08.007. Epub 2006 Aug 12.
20 Integrated transcriptomic and metabolomic analyses to characterize the anti-cancer effects of (-)-epigallocatechin-3-gallate in human colon cancer cells. Toxicol Appl Pharmacol. 2020 Aug 15;401:115100. doi: 10.1016/j.taap.2020.115100. Epub 2020 Jun 6.
21 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
22 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
23 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
24 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
25 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
26 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
27 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.
28 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
29 Differential azole antifungal efficacies contrasted using a Saccharomyces cerevisiae strain humanized for sterol 14 alpha-demethylase at the homolo... Antimicrob Agents Chemother. 2008 Oct;52(10):3597-603.
30 Targeting C4-demethylating genes in the cholesterol pathway sensitizes cancer cells to EGF receptor inhibitors via increased EGF receptor degradation. Cancer Discov. 2013 Jan;3(1):96-111. doi: 10.1158/2159-8290.CD-12-0031. Epub 2012 Nov 2.