General Information of Drug Off-Target (DOT) (ID: OTON6JSZ)

DOT Name Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2)
Synonyms Cadherin family member 10; Epidermal growth factor-like protein 2; EGF-like protein 2; Flamingo homolog 3; Multiple epidermal growth factor-like domains protein 3; Multiple EGF-like domains protein 3
Gene Name CELSR2
Related Disease
Breast cancer ( )
Breast carcinoma ( )
Pneumocystis pneumonia ( )
Acute coronary syndrome ( )
Advanced cancer ( )
Atrial fibrillation ( )
Atypical endometrial hyperplasia ( )
Breast neoplasm ( )
Cardiac failure ( )
Cardiovascular disease ( )
Carotid artery disease ( )
Coronary atherosclerosis ( )
Coronary heart disease ( )
Familial hypercholesterolemia ( )
Hydrocephalus ( )
Hypercholesterolemia, familial, 1 ( )
Neoplasm ( )
Peripheral arterial disease ( )
Stroke ( )
Type-1/2 diabetes ( )
Myocardial infarction ( )
UniProt ID
CELR2_HUMAN
Pfam ID
PF00002 ; PF00028 ; PF00008 ; PF16489 ; PF01825 ; PF00053 ; PF02210
Sequence
MRSPATGVPLPTPPPPLLLLLLLLLPPPLLGDQVGPCRSLGSRGRGSSGACAPMGWLCPS
SASNLWLYTSRCRDAGTELTGHLVPHHDGLRVWCPESEAHIPLPPAPEGCPWSCRLLGIG
GHLSPQGKLTLPEEHPCLKAPRLRCQSCKLAQAPGLRAGERSPEESLGGRRKRNVNTAPQ
FQPPSYQATVPENQPAGTPVASLRAIDPDEGEAGRLEYTMDALFDSRSNQFFSLDPVTGA
VTTAEELDRETKSTHVFRVTAQDHGMPRRSALATLTILVTDTNDHDPVFEQQEYKESLRE
NLEVGYEVLTVRATDGDAPPNANILYRLLEGSGGSPSEVFEIDPRSGVIRTRGPVDREEV
ESYQLTVEASDQGRDPGPRSTTAAVFLSVEDDNDNAPQFSEKRYVVQVREDVTPGAPVLR
VTASDRDKGSNAVVHYSIMSGNARGQFYLDAQTGALDVVSPLDYETTKEYTLRVRAQDGG
RPPLSNVSGLVTVQVLDINDNAPIFVSTPFQATVLESVPLGYLVLHVQAIDADAGDNARL
EYRLAGVGHDFPFTINNGTGWISVAAELDREEVDFYSFGVEARDHGTPALTASASVSVTV
LDVNDNNPTFTQPEYTVRLNEDAAVGTSVVTVSAVDRDAHSVITYQITSGNTRNRFSITS
QSGGGLVSLALPLDYKLERQYVLAVTASDGTRQDTAQIVVNVTDANTHRPVFQSSHYTVN
VNEDRPAGTTVVLISATDEDTGENARITYFMEDSIPQFRIDADTGAVTTQAELDYEDQVS
YTLAITARDNGIPQKSDTTYLEILVNDVNDNAPQFLRDSYQGSVYEDVPPFTSVLQISAT
DRDSGLNGRVFYTFQGGDDGDGDFIVESTSGIVRTLRRLDRENVAQYVLRAYAVDKGMPP
ARTPMEVTVTVLDVNDNPPVFEQDEFDVFVEENSPIGLAVARVTATDPDEGTNAQIMYQI
VEGNIPEVFQLDIFSGELTALVDLDYEDRPEYVLVIQATSAPLVSRATVHVRLLDRNDNP
PVLGNFEILFNNYVTNRSSSFPGGAIGRVPAHDPDISDSLTYSFERGNELSLVLLNASTG
ELKLSRALDNNRPLEAIMSVLVSDGVHSVTAQCALRVTIITDEMLTHSITLRLEDMSPER
FLSPLLGLFIQAVAATLATPPDHVVVFNVQRDTDAPGGHILNVSLSVGQPPGPGGGPPFL
PSEDLQERLYLNRSLLTAISAQRVLPFDDNICLREPCENYMRCVSVLRFDSSAPFIASSS
VLFRPIHPVGGLRCRCPPGFTGDYCETEVDLCYSRPCGPHGRCRSREGGYTCLCRDGYTG
EHCEVSARSGRCTPGVCKNGGTCVNLLVGGFKCDCPSGDFEKPYCQVTTRSFPAHSFITF
RGLRQRFHFTLALSFATKERDGLLLYNGRFNEKHDFVALEVIQEQVQLTFSAGESTTTVS
PFVPGGVSDGQWHTVQLKYYNKPLLGQTGLPQGPSEQKVAVVTVDGCDTGVALRFGSVLG
NYSCAAQGTQGGSKKSLDLTGPLLLGGVPDLPESFPVRMRQFVGCMRNLQVDSRHIDMAD
FIANNGTVPGCPAKKNVCDSNTCHNGGTCVNQWDAFSCECPLGFGGKSCAQEMANPQHFL
GSSLVAWHGLSLPISQPWYLSLMFRTRQADGVLLQAITRGRSTITLQLREGHVMLSVEGT
GLQASSLRLEPGRANDGDWHHAQLALGASGGPGHAILSFDYGQQRAEGNLGPRLHGLHLS
NITVGGIPGPAGGVARGFRGCLQGVRVSDTPEGVNSLDPSHGESINVEQGCSLPDPCDSN
PCPANSYCSNDWDSYSCSCDPGYYGDNCTNVCDLNPCEHQSVCTRKPSAPHGYTCECPPN
YLGPYCETRIDQPCPRGWWGHPTCGPCNCDVSKGFDPDCNKTSGECHCKENHYRPPGSPT
CLLCDCYPTGSLSRVCDPEDGQCPCKPGVIGRQCDRCDNPFAEVTTNGCEVNYDSCPRAI
EAGIWWPRTRFGLPAAAPCPKGSFGTAVRHCDEHRGWLPPNLFNCTSITFSELKGFAERL
QRNESGLDSGRSQQLALLLRNATQHTAGYFGSDVKVAYQLATRLLAHESTQRGFGLSATQ
DVHFTENLLRVGSALLDTANKRHWELIQQTEGGTAWLLQHYEAYASALAQNMRHTYLSPF
TIVTPNIVISVVRLDKGNFAGAKLPRYEALRGEQPPDLETTVILPESVFRETPPVVRPAG
PGEAQEPEELARRQRRHPELSQGEAVASVIIYRTLAGLLPHNYDPDKRSLRVPKRPIINT
PVVSISVHDDEELLPRALDKPVTVQFRLLETEERTKPICVFWNHSILVSGTGGWSARGCE
VVFRNESHVSCQCNHMTSFAVLMDVSRRENGEILPLKTLTYVALGVTLAALLLTFFFLTL
LRILRSNQHGIRRNLTAALGLAQLVFLLGINQADLPFACTVIAILLHFLYLCTFSWALLE
ALHLYRALTEVRDVNTGPMRFYYMLGWGVPAFITGLAVGLDPEGYGNPDFCWLSIYDTLI
WSFAGPVAFAVSMSVFLYILAARASCAAQRQGFEKKGPVSGLQPSFAVLLLLSATWLLAL
LSVNSDTLLFHYLFATCNCIQGPFIFLSYVVLSKEVRKALKLACSRKPSPDPALTTKSTL
TSSYNCPSPYADGRLYQPYGDSAGSLHSTSRSGKSQPSYIPFLLREESALNPGQGPPGLG
DPGSLFLEGQDQQHDPDTDSDSDLSLEDDQSGSYASTHSSDSEEEEEEEEEEAAFPGEQG
WDSLLGPGAERLPLHSTPKDGGPGPGKAPWPGDFGTTAKESSGNGAPEERLRENGDALSR
EGSLGPLPGSSAQPHKGILKKKCLPTISEKSSLLRLPLEQCTGSSRGSSASEGSRGGPPP
RPPPRQSLQEQLNGVMPIAMSIKAGTVDEDSSGSEFLFFNFLH
Function Receptor that may have an important role in cell/cell signaling during nervous system formation.
Tissue Specificity Highest expression in brain and testis.

Molecular Interaction Atlas (MIA) of This DOT

21 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Definitive Biomarker [1]
Breast carcinoma DIS2UE88 Definitive Biomarker [1]
Pneumocystis pneumonia DISFSOM3 Definitive Genetic Variation [2]
Acute coronary syndrome DIS7DYEW Strong Genetic Variation [3]
Advanced cancer DISAT1Z9 Strong Altered Expression [1]
Atrial fibrillation DIS15W6U Strong Genetic Variation [4]
Atypical endometrial hyperplasia DIS2POYG Strong Biomarker [5]
Breast neoplasm DISNGJLM Strong Altered Expression [1]
Cardiac failure DISDC067 Strong Genetic Variation [4]
Cardiovascular disease DIS2IQDX Strong Genetic Variation [6]
Carotid artery disease DISLRVLT Strong Genetic Variation [7]
Coronary atherosclerosis DISKNDYU Strong Altered Expression [8]
Coronary heart disease DIS5OIP1 Strong Genetic Variation [9]
Familial hypercholesterolemia DISC06IX Strong Genetic Variation [10]
Hydrocephalus DISIZUF7 Strong Biomarker [11]
Hypercholesterolemia, familial, 1 DISU411W Strong Genetic Variation [10]
Neoplasm DISZKGEW Strong Altered Expression [1]
Peripheral arterial disease DIS78WFB Strong Genetic Variation [12]
Stroke DISX6UHX Strong Genetic Variation [4]
Type-1/2 diabetes DISIUHAP Strong Genetic Variation [4]
Myocardial infarction DIS655KI moderate Genetic Variation [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2) affects the response to substance of Cisplatin. [27]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [14]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [24]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [15]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [16]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [17]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [18]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [19]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [20]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [21]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [22]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [25]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Differential cellular localization of CELSR2 and ING4 and correlations with hormone receptor status in breast cancer.Histol Histopathol. 2018 Aug;33(8):835-842. doi: 10.14670/HH-11-979. Epub 2018 Feb 28.
2 Genetic analysis of Wnt/PCP genes in neural tube defects.BMC Med Genomics. 2018 Apr 4;11(1):38. doi: 10.1186/s12920-018-0355-9.
3 Pharmacogenetic meta-analysis of baseline risk factors, pharmacodynamic, efficacy and tolerability endpoints from two large global cardiovascular outcomes trials for darapladib.PLoS One. 2017 Jul 28;12(7):e0182115. doi: 10.1371/journal.pone.0182115. eCollection 2017.
4 Pleiotropic Meta-Analyses of Longitudinal Studies Discover Novel Genetic Variants Associated with Age-Related Diseases.Front Genet. 2016 Oct 13;7:179. doi: 10.3389/fgene.2016.00179. eCollection 2016.
5 Hormonally active doses of isoflavone aglycones promote mammary and endometrial carcinogenesis and alter the molecular tumor environment in Donryu rats.Toxicol Sci. 2012 Mar;126(1):39-51. doi: 10.1093/toxsci/kfs016. Epub 2012 Jan 16.
6 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
7 Analysis of recently identified dyslipidemia alleles reveals two loci that contribute to risk for carotid artery disease.Lipids Health Dis. 2009 Dec 1;8:52. doi: 10.1186/1476-511X-8-52.
8 CELSR2-PSRC1-SORT1 gene expression and association with coronary artery disease and plasma lipid levels in an Asian Indian cohort.J Cardiol. 2014 Nov;64(5):339-46. doi: 10.1016/j.jjcc.2014.02.012. Epub 2014 Mar 24.
9 Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease.Circ Res. 2018 Feb 2;122(3):433-443. doi: 10.1161/CIRCRESAHA.117.312086. Epub 2017 Dec 6.
10 Refinement of variant selection for the LDL cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries.Clin Chem. 2015 Jan;61(1):231-8. doi: 10.1373/clinchem.2014.231365. Epub 2014 Nov 20.
11 Congenital hydrocephalus in genetically engineered mice.Vet Pathol. 2012 Jan;49(1):166-81. doi: 10.1177/0300985811415708. Epub 2011 Jul 11.
12 Genome-wide association study of peripheral artery disease in the Million Veteran Program.Nat Med. 2019 Aug;25(8):1274-1279. doi: 10.1038/s41591-019-0492-5. Epub 2019 Jul 8.
13 A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease.Nat Genet. 2015 Oct;47(10):1121-1130. doi: 10.1038/ng.3396. Epub 2015 Sep 7.
14 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
15 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
16 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
17 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
18 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
19 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
20 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
21 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
22 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
23 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
24 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
25 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
26 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
27 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.