General Information of Drug Off-Target (DOT) (ID: OTPQJXIR)

DOT Name Sentrin-specific protease 2 (SENP2)
Synonyms EC 3.4.22.-; Axam2; SMT3-specific isopeptidase 2; Smt3ip2; Sentrin/SUMO-specific protease SENP2
Gene Name SENP2
Related Disease
Advanced cancer ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Bladder cancer ( )
Cardiomyopathy ( )
Hepatocellular carcinoma ( )
Metabolic disorder ( )
Metastatic malignant neoplasm ( )
Neoplasm ( )
Non-insulin dependent diabetes ( )
Obesity ( )
Triple negative breast cancer ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Ventricular septal defect ( )
Breast cancer ( )
Breast carcinoma ( )
Osteoarthritis ( )
Bone osteosarcoma ( )
Epstein barr virus infection ( )
Osteosarcoma ( )
Small lymphocytic lymphoma ( )
UniProt ID
SENP2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1TGZ; 1TH0; 2IO0; 2IO1; 2IO2; 2IO3; 3ZO5; 5AEK
EC Number
3.4.22.-
Pfam ID
PF02902
Sequence
MYRWLVRILGTIFRFCDRSVPPARALLKRRRSDSTLFSTVDTDEIPAKRPRLDCFIHQVK
NSLYNAASLFGFPFQLTTKPMVTSACNGTRNVAPSGEVFSNSSSCELTGSGSWNNMLKLG
NKSPNGISDYPKIRVTVTRDQPRRVLPSFGFTLNSEGCNRRPGGRRHSKGNPESSLMWKP
QEQAVTEMISEESGKGLRRPHCTVEEGVQKEEREKYRKLLERLKESGHGNSVCPVTSNYH
SSQRSQMDTLKTKGWGEEQNHGVKTTQFVPKQYRLVETRGPLCSLRSEKRCSKGKITDTE
TMVGIRFENESRRGYQLEPDLSEEVSARLRLGSGSNGLLRRKVSIIETKEKNCSGKERDR
RTDDLLELTEDMEKEISNALGHGPQDEILSSAFKLRITRGDIQTLKNYHWLNDEVINFYM
NLLVERNKKQGYPALHVFSTFFYPKLKSGGYQAVKRWTKGVNLFEQEIILVPIHRKVHWS
LVVIDLRKKCLKYLDSMGQKGHRICEILLQYLQDESKTKRNSDLNLLEWTHHSMKPHEIP
QQLNGSDCGMFTCKYADYISRDKPITFTQHQMPLFRKKMVWEILHQQLL
Function
Protease that catalyzes two essential functions in the SUMO pathway. The first is the hydrolysis of an alpha-linked peptide bond at the C-terminal end of the small ubiquitin-like modifier (SUMO) propeptides, SUMO1, SUMO2 and SUMO3 leading to the mature form of the proteins. The second is the deconjugation of SUMO1, SUMO2 and SUMO3 from targeted proteins, by cleaving an epsilon-linked peptide bond between the C-terminal glycine of the mature SUMO and the lysine epsilon-amino group of the target protein. May down-regulate CTNNB1 levels and thereby modulate the Wnt pathway. Deconjugates SUMO2 from MTA1. Plays a dynamic role in adipogenesis by desumoylating and promoting the stabilization of CEBPB. Acts as a regulator of the cGAS-STING pathway by catalyzing desumoylation of CGAS and STING1 during the late phase of viral infection.
KEGG Pathway
Nucleocytoplasmic transport (hsa03013 )
Wnt sig.ling pathway (hsa04310 )
Reactome Pathway
SUMO is proteolytically processed (R-HSA-3065679 )

Molecular Interaction Atlas (MIA) of This DOT

22 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Arteriosclerosis DISK5QGC Strong Biomarker [2]
Atherosclerosis DISMN9J3 Strong Biomarker [2]
Bladder cancer DISUHNM0 Strong Altered Expression [3]
Cardiomyopathy DISUPZRG Strong Biomarker [4]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [5]
Metabolic disorder DIS71G5H Strong Biomarker [6]
Metastatic malignant neoplasm DIS86UK6 Strong Biomarker [3]
Neoplasm DISZKGEW Strong Biomarker [1]
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [7]
Obesity DIS47Y1K Strong Biomarker [8]
Triple negative breast cancer DISAMG6N Strong Biomarker [9]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [3]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [3]
Ventricular septal defect DISICO41 Strong Altered Expression [4]
Breast cancer DIS7DPX1 moderate Genetic Variation [10]
Breast carcinoma DIS2UE88 moderate Genetic Variation [10]
Osteoarthritis DIS05URM moderate Altered Expression [11]
Bone osteosarcoma DIST1004 Limited Biomarker [5]
Epstein barr virus infection DISOO0WT Limited Biomarker [12]
Osteosarcoma DISLQ7E2 Limited Biomarker [5]
Small lymphocytic lymphoma DIS30POX Limited Biomarker [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Sentrin-specific protease 2 (SENP2). [13]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Sentrin-specific protease 2 (SENP2). [14]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Sentrin-specific protease 2 (SENP2). [15]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Sentrin-specific protease 2 (SENP2). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Sentrin-specific protease 2 (SENP2). [18]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Sentrin-specific protease 2 (SENP2). [19]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Sentrin-specific protease 2 (SENP2). [20]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Sentrin-specific protease 2 (SENP2). [21]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of Sentrin-specific protease 2 (SENP2). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Sentrin-specific protease 2 (SENP2). [17]
------------------------------------------------------------------------------------

References

1 SENP2 exerts an antitumor effect on chronic lymphocytic leukemia cells through the inhibition of the Notch and NFB signaling pathways.Int J Oncol. 2019 Feb;54(2):455-466. doi: 10.3892/ijo.2018.4635. Epub 2018 Nov 14.
2 SUMO-specific protease 2 (SENP2) suppresses keratinocyte migration by targeting NDR1 for de-SUMOylation.FASEB J. 2019 Jan;33(1):163-174. doi: 10.1096/fj.201800353R. Epub 2018 Jul 3.
3 SENP2 suppresses epithelial-mesenchymal transition of bladder cancer cells through deSUMOylation of TGF-RI.Mol Carcinog. 2017 Oct;56(10):2332-2341. doi: 10.1002/mc.22687. Epub 2017 Jun 30.
4 Enhanced desumoylation in murine hearts by overexpressed SENP2 leads to congenital heart defects and cardiac dysfunction.J Mol Cell Cardiol. 2012 Mar;52(3):638-49. doi: 10.1016/j.yjmcc.2011.11.011. Epub 2011 Dec 1.
5 SUMO-specific protease 2 (SENP2) functions as a tumor suppressor in osteosarcoma via SOX9 degradation.Exp Ther Med. 2018 Dec;16(6):5359-5365. doi: 10.3892/etm.2018.6838. Epub 2018 Oct 9.
6 SUMO-Specific Protease 2 (SENP2) Is an Important Regulator of Fatty Acid Metabolism in Skeletal Muscle.Diabetes. 2015 Jul;64(7):2420-31. doi: 10.2337/db15-0115. Epub 2015 Mar 17.
7 Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.Nat Genet. 2018 Apr;50(4):559-571. doi: 10.1038/s41588-018-0084-1. Epub 2018 Apr 9.
8 Senp2 regulates adipose lipid storage by de-SUMOylation of Setdb1.J Mol Cell Biol. 2018 Jun 1;10(3):258-266. doi: 10.1093/jmcb/mjx055.
9 The role of sentrin-specific protease 2 substrate recognition in TGF--induced tumorigenesis.Sci Rep. 2018 Jun 28;8(1):9786. doi: 10.1038/s41598-018-28103-8.
10 Association of SENPs single-nucleotide polymorphism and breast cancer in Chinese population.Medicine (Baltimore). 2019 Feb;98(6):e14168. doi: 10.1097/MD.0000000000014168.
11 Desumoylation of aggrecan and collagen II facilitates degradation via aggrecanases in IL-1-mediated osteoarthritis.J Pain Res. 2019 Jul 12;12:2145-2153. doi: 10.2147/JPR.S194306. eCollection 2019.
12 The Epstein-Barr Virus Oncoprotein, LMP1, Regulates the Function of SENP2, a SUMO-protease.Sci Rep. 2019 Jul 2;9(1):9523. doi: 10.1038/s41598-019-45825-5.
13 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
14 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
15 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
16 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
17 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
18 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
19 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
20 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
21 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
22 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.