General Information of Drug Off-Target (DOT) (ID: OTVDHO6U)

DOT Name Serine/arginine-rich splicing factor 2 (SRSF2)
Synonyms Protein PR264; Splicing component, 35 kDa; Splicing factor SC35; SC-35; Splicing factor, arginine/serine-rich 2
Gene Name SRSF2
Related Disease
Carcinoma ( )
Chronic myelomonocytic leukaemia ( )
Undifferentiated carcinoma ( )
Uveal Melanoma ( )
Acute lymphocytic leukaemia ( )
Acute monocytic leukemia ( )
Alzheimer disease ( )
Amyloidosis ( )
Breast cancer ( )
Breast carcinoma ( )
Chronic myelomonocytic leukemia ( )
Essential thrombocythemia ( )
Hepatocellular carcinoma ( )
Influenza ( )
Lung adenocarcinoma ( )
Lung neoplasm ( )
Lung squamous cell carcinoma ( )
Mastocytosis ( )
Myeloproliferative neoplasm ( )
Myotonic dystrophy ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Osteogenesis imperfecta ( )
Progressive supranuclear palsy ( )
Supranuclear palsy, progressive, 1 ( )
Tauopathy ( )
Thrombocytopenia ( )
Uterine cervix neoplasm ( )
Vitelliform macular dystrophy ( )
Childhood myelodysplastic syndrome ( )
Kidney cancer ( )
Lung carcinoma ( )
Plasma cell myeloma ( )
Renal carcinoma ( )
Systemic mastocytosis ( )
Triple negative breast cancer ( )
Myelodysplastic syndrome ( )
Advanced cancer ( )
Angioimmunoblastic T-cell Lymphoma ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Coronary heart disease ( )
Human papillomavirus infection ( )
Intellectual disability ( )
Lactic acidosis ( )
Leigh syndrome ( )
UniProt ID
SRSF2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2KN4; 2LEA; 2LEB; 2LEC
Pfam ID
PF00076
Sequence
MSYGRPPPDVEGMTSLKVDNLTYRTSPDTLRRVFEKYGRVGDVYIPRDRYTKESRGFAFV
RFHDKRDAEDAMDAMDGAVLDGRELRVQMARYGRPPDSHHSRRGPPPRRYGGGGYGRRSR
SPRRRRRSRSRSRSRSRSRSRSRYSRSKSRSRTRSRSRSTSKSRSARRSKSKSSSVSRSR
SRSRSRSRSRSPPPVSKRESKSRSRSKSPPKSPEEEGAVSS
Function
Necessary for the splicing of pre-mRNA. It is required for formation of the earliest ATP-dependent splicing complex and interacts with spliceosomal components bound to both the 5'- and 3'-splice sites during spliceosome assembly. It also is required for ATP-dependent interactions of both U1 and U2 snRNPs with pre-mRNA. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5'- and 3'-splice site binding components, U1 snRNP and U2AF. Binds to purine-rich RNA sequences, either 5'-AGSAGAGTA-3' (S=C or G) or 5'-GTTCGAGTA-3'. Can bind to beta-globin mRNA and commit it to the splicing pathway. The phosphorylated form (by SRPK2) is required for cellular apoptosis in response to cisplatin treatment.
KEGG Pathway
Spliceosome (hsa03040 )
Herpes simplex virus 1 infection (hsa05168 )
Reactome Pathway
mRNA Splicing - Major Pathway (R-HSA-72163 )
mRNA Splicing - Minor Pathway (R-HSA-72165 )
mRNA 3'-end processing (R-HSA-72187 )
Processing of Capped Intron-Containing Pre-mRNA (R-HSA-72203 )
RNA Polymerase II Transcription Termination (R-HSA-73856 )
Transport of Mature mRNA derived from an Intron-Containing Transcript (R-HSA-159236 )

Molecular Interaction Atlas (MIA) of This DOT

46 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Carcinoma DISH9F1N Definitive Biomarker [1]
Chronic myelomonocytic leukaemia DISDN5P7 Definitive Genetic Variation [2]
Undifferentiated carcinoma DISIAZST Definitive Biomarker [1]
Uveal Melanoma DISA7ZGL Definitive Genetic Variation [3]
Acute lymphocytic leukaemia DISPX75S Strong Genetic Variation [4]
Acute monocytic leukemia DIS28NEL Strong Biomarker [5]
Alzheimer disease DISF8S70 Strong Genetic Variation [6]
Amyloidosis DISHTAI2 Strong Genetic Variation [7]
Breast cancer DIS7DPX1 Strong Genetic Variation [8]
Breast carcinoma DIS2UE88 Strong Genetic Variation [8]
Chronic myelomonocytic leukemia DISIL8UR Strong Biomarker [2]
Essential thrombocythemia DISWWK11 Strong Altered Expression [9]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [10]
Influenza DIS3PNU3 Strong Biomarker [11]
Lung adenocarcinoma DISD51WR Strong Altered Expression [12]
Lung neoplasm DISVARNB Strong Altered Expression [13]
Lung squamous cell carcinoma DISXPIBD Strong Biomarker [12]
Mastocytosis DIS1TEE0 Strong Genetic Variation [14]
Myeloproliferative neoplasm DIS5KAPA Strong Genetic Variation [15]
Myotonic dystrophy DISNBEMX Strong Genetic Variation [16]
Neoplasm DISZKGEW Strong Altered Expression [17]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [18]
Osteogenesis imperfecta DIS7XQSD Strong Genetic Variation [19]
Progressive supranuclear palsy DISO5KRQ Strong Biomarker [20]
Supranuclear palsy, progressive, 1 DIS47BVM Strong Biomarker [20]
Tauopathy DISY2IPA Strong Biomarker [21]
Thrombocytopenia DISU61YW Strong Biomarker [22]
Uterine cervix neoplasm DIS0BYVV Strong Biomarker [23]
Vitelliform macular dystrophy DISEFYYN Strong Biomarker [24]
Childhood myelodysplastic syndrome DISMN80I moderate Genetic Variation [25]
Kidney cancer DISBIPKM moderate Biomarker [26]
Lung carcinoma DISTR26C moderate Biomarker [12]
Plasma cell myeloma DIS0DFZ0 moderate Genetic Variation [27]
Renal carcinoma DISER9XT moderate Biomarker [26]
Systemic mastocytosis DISNQ2OY moderate Genetic Variation [28]
Triple negative breast cancer DISAMG6N moderate Altered Expression [17]
Myelodysplastic syndrome DISYHNUI Disputed Genetic Variation [29]
Advanced cancer DISAT1Z9 Limited Genetic Variation [30]
Angioimmunoblastic T-cell Lymphoma DISZPFTL Limited Genetic Variation [31]
Arteriosclerosis DISK5QGC Limited Genetic Variation [32]
Atherosclerosis DISMN9J3 Limited Genetic Variation [32]
Coronary heart disease DIS5OIP1 Limited Genetic Variation [32]
Human papillomavirus infection DISX61LX Limited Altered Expression [33]
Intellectual disability DISMBNXP Limited Biomarker [34]
Lactic acidosis DISZI1ZK Limited Altered Expression [34]
Leigh syndrome DISWQU45 Limited Genetic Variation [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Artesunate DMR27C8 Approved Serine/arginine-rich splicing factor 2 (SRSF2) decreases the response to substance of Artesunate. [61]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [35]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [36]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [37]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [39]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [41]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [42]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [43]
Bexarotene DMOBIKY Approved Bexarotene decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [44]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [45]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [46]
Curcumin DMQPH29 Phase 3 Curcumin increases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [47]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [48]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [49]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [46]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [51]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [52]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [53]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [54]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [55]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [57]
KOJIC ACID DMP84CS Investigative KOJIC ACID increases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [58]
PP-242 DM2348V Investigative PP-242 decreases the expression of Serine/arginine-rich splicing factor 2 (SRSF2). [60]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Cisplatin decreases the acetylation of Serine/arginine-rich splicing factor 2 (SRSF2). [38]
Quercetin DM3NC4M Approved Quercetin decreases the phosphorylation of Serine/arginine-rich splicing factor 2 (SRSF2). [40]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Serine/arginine-rich splicing factor 2 (SRSF2). [50]
Butanoic acid DMTAJP7 Investigative Butanoic acid decreases the phosphorylation of Serine/arginine-rich splicing factor 2 (SRSF2). [59]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Paraquat DMR8O3X Investigative Paraquat affects the localization of Serine/arginine-rich splicing factor 2 (SRSF2). [56]
------------------------------------------------------------------------------------

References

1 Global gene expression profiling of chemically induced rat mammary gland carcinomas and adenomas.Toxicol Pathol. 2005;33(7):768-75. doi: 10.1080/01926230500437027.
2 Prognostic significance of SRSF2 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis.Hematology. 2018 Dec;23(10):778-784. doi: 10.1080/10245332.2018.1471794. Epub 2018 May 14.
3 SRSF2 Mutations in Uveal Melanoma: A Preference for In-Frame Deletions?.Cancers (Basel). 2019 Aug 17;11(8):1200. doi: 10.3390/cancers11081200.
4 Mutational analysis of splicing machinery genes SF3B1, U2AF1 and SRSF2 in myelodysplasia and other common tumors.Int J Cancer. 2013 Jul;133(1):260-5. doi: 10.1002/ijc.28011. Epub 2013 Feb 5.
5 Targeted molecular characterization shows differences between primary and secondary myelofibrosis.Genes Chromosomes Cancer. 2020 Jan;59(1):30-39. doi: 10.1002/gcc.22789. Epub 2019 Sep 2.
6 CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer's disease susceptibility.Hum Mol Genet. 2014 May 15;23(10):2729-36. doi: 10.1093/hmg/ddt666. Epub 2013 Dec 30.
7 Amyloid- peptide alteration of tau exon-10 splicing via the GSK3-SC35 pathway.Neurobiol Dis. 2010 Nov;40(2):378-85. doi: 10.1016/j.nbd.2010.06.013. Epub 2010 Jul 6.
8 Unique CD44 intronic SNP is associated with tumor grade in breast cancer: a case control study and in silico analysis.Cancer Cell Int. 2018 Feb 23;18:28. doi: 10.1186/s12935-018-0522-2. eCollection 2018.
9 Comparison of the Mutational Profiles of Primary Myelofibrosis, Polycythemia Vera, and Essential Thrombocytosis.Am J Clin Pathol. 2017 May 1;147(5):444-452. doi: 10.1093/ajcp/aqw222.
10 Serine/arginine rich splicing factor 2 expression and clinic pathological features indicating a prognostic factor in human hepatocellular carcinoma patients.Cancer Biomark. 2018 Feb 14;21(3):681-687. doi: 10.3233/CBM-170770.
11 The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host.Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18590-5. doi: 10.1073/pnas.0507415102. Epub 2005 Dec 8.
12 Abnormal expression of the pre-mRNA splicing regulators SRSF1, SRSF2, SRPK1 and SRPK2 in non small cell lung carcinoma.PLoS One. 2012;7(10):e46539. doi: 10.1371/journal.pone.0046539. Epub 2012 Oct 10.
13 A new function of the splicing factor SRSF2 in the control of E2F1-mediated cell cycle progression in neuroendocrine lung tumors.Cell Cycle. 2013 Apr 15;12(8):1267-78. doi: 10.4161/cc.24363. Epub 2013 Mar 21.
14 Mutational Hotspot of TET2, IDH1, IDH2, SRSF2, SF3B1, KRAS, and NRAS from Human Systemic Mastocytosis Are Not Conserved in Canine Mast Cell Tumors.PLoS One. 2015 Nov 12;10(11):e0142450. doi: 10.1371/journal.pone.0142450. eCollection 2015.
15 Leukemic Transformation of Myeloproliferative Neoplasms: Therapeutic and Genomic Considerations.Curr Hematol Malig Rep. 2018 Dec;13(6):588-595. doi: 10.1007/s11899-018-0491-5.
16 Defining early steps in mRNA transport: mutant mRNA in myotonic dystrophy type I is blocked at entry into SC-35 domains.J Cell Biol. 2007 Sep 10;178(6):951-64. doi: 10.1083/jcb.200706048.
17 Obesity-induced MBD2_v2 expression promotes tumor-initiating triple-negative breast cancer stem cells.Mol Oncol. 2019 Apr;13(4):894-908. doi: 10.1002/1878-0261.12444. Epub 2019 Mar 1.
18 Downregulation of SRPK2 promotes cell cycle arrest though E2F1 in non-small cell lung cancer.Eur J Histochem. 2019 Dec 11;63(4):3067. doi: 10.4081/ejh.2019.3067.
19 Tracking COL1A1 RNA in osteogenesis imperfecta. splice-defective transcripts initiate transport from the gene but are retained within the SC35 domain.J Cell Biol. 2000 Aug 7;150(3):417-32. doi: 10.1083/jcb.150.3.417.
20 Mitochondrial complex 1 inhibition increases 4-repeat isoform tau by SRSF2 upregulation.PLoS One. 2014 Nov 17;9(11):e113070. doi: 10.1371/journal.pone.0113070. eCollection 2014.
21 SIRT1 Deacetylates SC35 and Suppresses Its Function in Tau Exon 10 Inclusion.J Alzheimers Dis. 2018;61(2):561-570. doi: 10.3233/JAD-170418.
22 Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes.Leukemia. 2016 Mar;30(3):666-73. doi: 10.1038/leu.2015.304. Epub 2015 Oct 30.
23 Human Papillomavirus 16 Oncoprotein Expression Is Controlled by the Cellular Splicing Factor SRSF2 (SC35).J Virol. 2015 May;89(10):5276-87. doi: 10.1128/JVI.03434-14. Epub 2015 Feb 25.
24 ADVIRC is caused by distinct mutations in BEST1 that alter pre-mRNA splicing. J Med Genet. 2009 Sep;46(9):620-5. doi: 10.1136/jmg.2008.059881. Epub 2008 Jul 8.
25 Myelodysplastic Syndrome-Associated SRSF2 Mutations Cause Splicing Changes by Altering Binding Motif Sequences.Front Genet. 2019 Apr 16;10:338. doi: 10.3389/fgene.2019.00338. eCollection 2019.
26 microRNA-mediated regulation of splicing factors SRSF1, SRSF2 and hnRNP A1 in context of their alternatively spliced 3'UTRs.Exp Cell Res. 2018 Feb 15;363(2):208-217. doi: 10.1016/j.yexcr.2018.01.009. Epub 2018 Jan 10.
27 Molecular Markers and Prognosis of Myelofibrosis in the Genomic Era: A Meta-analysis.Clin Lymphoma Myeloma Leuk. 2018 Sep;18(9):558-568. doi: 10.1016/j.clml.2018.06.004. Epub 2018 Jun 8.
28 Incidence and prognostic impact of cytogenetic aberrations in patients with systemic mastocytosis.Genes Chromosomes Cancer. 2018 May;57(5):252-259. doi: 10.1002/gcc.22526. Epub 2018 Feb 19.
29 Distinct and convergent consequences of splice factor mutations in myelodysplastic syndromes.Am J Hematol. 2020 Feb;95(2):133-143. doi: 10.1002/ajh.25673. Epub 2019 Nov 18.
30 Altered expression of CSF3R splice variants impacts signal response and is associated with SRSF2 mutations.Leukemia. 2020 Feb;34(2):369-379. doi: 10.1038/s41375-019-0567-9. Epub 2019 Aug 28.
31 Response to 5-azacytidine in a patient with TET2-mutated angioimmunoblastic T-cell lymphoma and chronic myelomonocytic leukaemia preceded by an EBV-positive large B-cell lymphoma.Hematol Oncol. 2017 Dec;35(4):864-868. doi: 10.1002/hon.2319. Epub 2016 Jun 29.
32 Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing.RNA. 2015 Jun;21(6):1187-202. doi: 10.1261/rna.049890.115. Epub 2015 Apr 22.
33 Human papillomavirus regulation of SR proteins.Biochem Soc Trans. 2010 Aug;38(4):1116-21. doi: 10.1042/BST0381116.
34 The SR protein SC35 is responsible for aberrant splicing of the E1alpha pyruvate dehydrogenase mRNA in a case of mental retardation with lactic acidosis.Mol Cell Biol. 2005 Apr;25(8):3286-94. doi: 10.1128/MCB.25.8.3286-3294.2005.
35 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
36 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
37 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
38 Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin. EMBO J. 2011 Feb 2;30(3):510-23. doi: 10.1038/emboj.2010.333. Epub 2010 Dec 14.
39 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
40 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
41 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
42 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
43 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
44 Identification of biomarkers modulated by the rexinoid LGD1069 (bexarotene) in human breast cells using oligonucleotide arrays. Cancer Res. 2006 Dec 15;66(24):12009-18.
45 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
46 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
47 Gene-expression profiling during curcumin-induced apoptosis reveals downregulation of CXCR4. Exp Hematol. 2007 Jan;35(1):84-95.
48 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
49 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
50 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
51 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
52 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
53 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
54 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
55 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
56 Paraquat modulates alternative pre-mRNA splicing by modifying the intracellular distribution of SRPK2. PLoS One. 2013 Apr 16;8(4):e61980. doi: 10.1371/journal.pone.0061980. Print 2013.
57 Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol. 2007 May 15;41(10):3769-74.
58 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.
59 SRSF2 is required for sodium butyrate-mediated p21(WAF1) induction and premature senescence in human lung carcinoma cell lines. Cell Cycle. 2011 Jun 15;10(12):1968-77. doi: 10.4161/cc.10.12.15825. Epub 2011 Jun 15.
60 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.
61 Factors determining sensitivity or resistance of tumor cell lines towards artesunate. Chem Biol Interact. 2010 Apr 15;185(1):42-52.