General Information of Drug Off-Target (DOT) (ID: OTVV1YV9)

DOT Name Phosphoserine aminotransferase (PSAT1)
Synonyms EC 2.6.1.52; Phosphohydroxythreonine aminotransferase; PSAT
Gene Name PSAT1
Related Disease
Neurometabolic disorder due to serine deficiency ( )
Neu-Laxova syndrome 1 ( )
PSAT deficiency ( )
Neu-Laxova syndrome 2 ( )
Neu-Laxova syndrome ( )
UniProt ID
SERC_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3E77; 8A5V; 8A5W
EC Number
2.6.1.52
Pfam ID
PF00266
Sequence
MDAPRQVVNFGPGPAKLPHSVLLEIQKELLDYKGVGISVLEMSHRSSDFAKIINNTENLV
RELLAVPDNYKVIFLQGGGCGQFSAVPLNLIGLKAGRCADYVVTGAWSAKAAEEAKKFGT
INIVHPKLGSYTKIPDPSTWNLNPDASYVYYCANETVHGVEFDFIPDVKGAVLVCDMSSN
FLSKPVDVSKFGVIFAGAQKNVGSAGVTVVIVRDDLLGFALRECPSVLEYKVQAGNSSLY
NTPPCFSIYVMGLVLEWIKNNGGAAAMEKLSSIKSQTIYEIIDNSQGFYVCPVEPQNRSK
MNIPFRIGNAKGDDALEKRFLDKALELNMLSLKGHRSVGGIRASLYNAVTIEDVQKLAAF
MKKFLEMHQL
Function
Involved in L-serine biosynthesis via the phosphorylated pathway, a three-step pathway converting the glycolytic intermediate 3-phospho-D-glycerate into L-serine. Catalyzes the second step, that is the pyridoxal 5'-phosphate-dependent transamination of 3-phosphohydroxypyruvate and L-glutamate to O-phosphoserine (OPS) and alpha-ketoglutarate.
Tissue Specificity Expressed at high levels in the brain, liver, kidney and pancreas, and very weakly expressed in the thymus, prostate, testis and colon.
KEGG Pathway
Glycine, serine and threonine metabolism (hsa00260 )
Cysteine and methionine metabolism (hsa00270 )
Vitamin B6 metabolism (hsa00750 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
Biosynthesis of amino acids (hsa01230 )
Biosynthesis of cofactors (hsa01240 )
Reactome Pathway
Serine biosynthesis (R-HSA-977347 )
BioCyc Pathway
MetaCyc:HS05946-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neurometabolic disorder due to serine deficiency DISCF5UM Definitive Autosomal recessive [1]
Neu-Laxova syndrome 1 DISM00VW Strong Autosomal recessive [2]
PSAT deficiency DISNXD8Z Strong Autosomal recessive [2]
Neu-Laxova syndrome 2 DISBF447 Moderate Autosomal recessive [3]
Neu-Laxova syndrome DISKU3GJ Supportive Autosomal recessive [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Irinotecan DMP6SC2 Approved Phosphoserine aminotransferase (PSAT1) increases the response to substance of Irinotecan. [40]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Phosphoserine aminotransferase (PSAT1). [5]
------------------------------------------------------------------------------------
41 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Phosphoserine aminotransferase (PSAT1). [6]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Phosphoserine aminotransferase (PSAT1). [7]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Phosphoserine aminotransferase (PSAT1). [8]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Phosphoserine aminotransferase (PSAT1). [9]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Phosphoserine aminotransferase (PSAT1). [10]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Phosphoserine aminotransferase (PSAT1). [11]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Phosphoserine aminotransferase (PSAT1). [12]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Phosphoserine aminotransferase (PSAT1). [13]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Phosphoserine aminotransferase (PSAT1). [14]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Phosphoserine aminotransferase (PSAT1). [15]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Phosphoserine aminotransferase (PSAT1). [16]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Phosphoserine aminotransferase (PSAT1). [17]
Marinol DM70IK5 Approved Marinol increases the expression of Phosphoserine aminotransferase (PSAT1). [18]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Phosphoserine aminotransferase (PSAT1). [19]
Progesterone DMUY35B Approved Progesterone increases the expression of Phosphoserine aminotransferase (PSAT1). [20]
Menadione DMSJDTY Approved Menadione affects the expression of Phosphoserine aminotransferase (PSAT1). [21]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Phosphoserine aminotransferase (PSAT1). [18]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Phosphoserine aminotransferase (PSAT1). [17]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Phosphoserine aminotransferase (PSAT1). [22]
Dasatinib DMJV2EK Approved Dasatinib increases the expression of Phosphoserine aminotransferase (PSAT1). [23]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of Phosphoserine aminotransferase (PSAT1). [24]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Phosphoserine aminotransferase (PSAT1). [11]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of Phosphoserine aminotransferase (PSAT1). [25]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Phosphoserine aminotransferase (PSAT1). [11]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Phosphoserine aminotransferase (PSAT1). [11]
Lucanthone DMZLBUO Approved Lucanthone decreases the expression of Phosphoserine aminotransferase (PSAT1). [26]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil decreases the expression of Phosphoserine aminotransferase (PSAT1). [11]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Phosphoserine aminotransferase (PSAT1). [12]
ANW-32821 DMMJOZD Phase 2 ANW-32821 increases the expression of Phosphoserine aminotransferase (PSAT1). [27]
NVP-AUY922 DMTYXQF Phase 2 NVP-AUY922 increases the expression of Phosphoserine aminotransferase (PSAT1). [28]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Phosphoserine aminotransferase (PSAT1). [29]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Phosphoserine aminotransferase (PSAT1). [30]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Phosphoserine aminotransferase (PSAT1). [31]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Phosphoserine aminotransferase (PSAT1). [32]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Phosphoserine aminotransferase (PSAT1). [33]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Phosphoserine aminotransferase (PSAT1). [34]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Phosphoserine aminotransferase (PSAT1). [35]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Phosphoserine aminotransferase (PSAT1). [36]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Phosphoserine aminotransferase (PSAT1). [37]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Phosphoserine aminotransferase (PSAT1). [38]
Arachidonic acid DMUOQZD Investigative Arachidonic acid increases the expression of Phosphoserine aminotransferase (PSAT1). [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am J Hum Genet. 2007 May;80(5):931-7. doi: 10.1086/517888. Epub 2007 Mar 30.
3 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
4 Neu-Laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014 Sep 4;95(3):285-93. doi: 10.1016/j.ajhg.2014.07.012. Epub 2014 Aug 21.
5 Integrated 'omics analysis reveals new drug-induced mitochondrial perturbations in human hepatocytes. Toxicol Lett. 2018 Jun 1;289:1-13.
6 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
7 Effect of retinoic acid on gene expression in human conjunctival epithelium: secretory phospholipase A2 mediates retinoic acid induction of MUC16. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4050-61.
8 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
9 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
10 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
11 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
12 Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett. 2005 Mar 14;579(7):1732-40.
13 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
14 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
15 Global effects of inorganic arsenic on gene expression profile in human macrophages. Mol Immunol. 2009 Feb;46(4):649-56.
16 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
17 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
18 Inhibiting Heat Shock Proteins Can Potentiate the Cytotoxic Effect of Cannabidiol in Human Glioma Cells. Anticancer Res. 2015 Nov;35(11):5827-37.
19 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
20 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
21 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
22 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
23 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
24 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
25 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
26 Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem. 2011 Feb 25;286(8):6602-13.
27 Human Mincle Binds to Cholesterol Crystals and Triggers Innate Immune Responses. J Biol Chem. 2015 Oct 16;290(42):25322-32. doi: 10.1074/jbc.M115.645234. Epub 2015 Aug 20.
28 Impact of Heat Shock Protein 90 Inhibition on the Proteomic Profile of Lung Adenocarcinoma as Measured by Two-Dimensional Electrophoresis Coupled with Mass Spectrometry. Cells. 2019 Jul 31;8(8):806. doi: 10.3390/cells8080806.
29 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
30 BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood. 2012 Oct 4;120(14):2843-52.
31 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
32 Bisphenolic compounds alter gene expression in MCF-7 cells through interaction with estrogen receptor . Toxicol Appl Pharmacol. 2020 Jul 15;399:115030. doi: 10.1016/j.taap.2020.115030. Epub 2020 May 6.
33 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
34 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
35 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
36 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
37 CD34+ derived macrophage and dendritic cells display differential responses to paraquat. Toxicol In Vitro. 2021 Sep;75:105198. doi: 10.1016/j.tiv.2021.105198. Epub 2021 Jun 9.
38 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
39 Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis. 2006 Oct;27(10):1950-60.
40 Gene expression analysis using human cancer xenografts to identify novel predictive marker genes for the efficacy of 5-fluorouracil-based drugs. Cancer Sci. 2006 Jun;97(6):510-22. doi: 10.1111/j.1349-7006.2006.00204.x.