General Information of Drug Off-Target (DOT) (ID: OTX0QGKK)

DOT Name Urokinase-type plasminogen activator (PLAU)
Synonyms U-plasminogen activator; uPA; EC 3.4.21.73
Gene Name PLAU
Related Disease
Quebec platelet disorder ( )
UniProt ID
UROK_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1C5W ; 1C5X ; 1C5Y ; 1C5Z ; 1EJN ; 1F5K ; 1F5L ; 1F92 ; 1FV9 ; 1GI7 ; 1GI8 ; 1GI9 ; 1GJ7 ; 1GJ8 ; 1GJ9 ; 1GJA ; 1GJB ; 1GJC ; 1GJD ; 1KDU ; 1LMW ; 1O3P ; 1O5A ; 1O5B ; 1O5C ; 1OWD ; 1OWE ; 1OWH ; 1OWI ; 1OWJ ; 1OWK ; 1SC8 ; 1SQA ; 1SQO ; 1SQT ; 1U6Q ; 1URK ; 1VJ9 ; 1VJA ; 1W0Z ; 1W10 ; 1W11 ; 1W12 ; 1W13 ; 1W14 ; 2FD6 ; 2I9A ; 2I9B ; 2NWN ; 2O8T ; 2O8U ; 2O8W ; 2R2W ; 2VIN ; 2VIO ; 2VIP ; 2VIQ ; 2VIV ; 2VIW ; 2VNT ; 3BT1 ; 3BT2 ; 3IG6 ; 3KGP ; 3KHV ; 3KID ; 3M61 ; 3MHW ; 3MWI ; 3OX7 ; 3OY5 ; 3OY6 ; 3PB1 ; 3QN7 ; 3U73 ; 4DVA ; 4DW2 ; 4FU7 ; 4FU8 ; 4FU9 ; 4FUB ; 4FUC ; 4FUD ; 4FUE ; 4FUF ; 4FUG ; 4FUH ; 4FUI ; 4FUJ ; 4GLY ; 4H42 ; 4JK5 ; 4JK6 ; 4K24 ; 4MNV ; 4MNW ; 4MNX ; 4MNY ; 4OS1 ; 4OS2 ; 4OS4 ; 4OS5 ; 4OS6 ; 4OS7 ; 4X0W ; 4X1N ; 4X1P ; 4X1Q ; 4X1R ; 4X1S ; 4XSK ; 4ZHL ; 4ZHM ; 4ZKN ; 4ZKO ; 4ZKR ; 4ZKS ; 5HGG ; 5WXF ; 5WXO ; 5WXP ; 5WXQ ; 5WXR ; 5WXS ; 5WXT ; 5XG4 ; 5YC6 ; 5YC7 ; 5Z1C ; 5ZA7 ; 5ZA8 ; 5ZA9 ; 5ZAE ; 5ZAF ; 5ZAG ; 5ZAH ; 5ZAJ ; 5ZC5 ; 6AG2 ; 6AG3 ; 6AG7 ; 6AG9 ; 6JYP ; 6JYQ ; 6L04 ; 6L05 ; 6NMB ; 6XVD ; 7DZD ; 7VM4 ; 7VM5 ; 7VM6 ; 7VM7 ; 7ZRR ; 7ZRT
EC Number
3.4.21.73
Pfam ID
PF00051 ; PF00089
Sequence
MRALLARLLLCVLVVSDSKGSNELHQVPSNCDCLNGGTCVSNKYFSNIHWCNCPKKFGGQ
HCEIDKSKTCYEGNGHFYRGKASTDTMGRPCLPWNSATVLQQTYHAHRSDALQLGLGKHN
YCRNPDNRRRPWCYVQVGLKLLVQECMVHDCADGKKPSSPPEELKFQCGQKTLRPRFKII
GGEFTTIENQPWFAAIYRRHRGGSVTYVCGGSLISPCWVISATHCFIDYPKKEDYIVYLG
RSRLNSNTQGEMKFEVENLILHKDYSADTLAHHNDIALLKIRSKEGRCAQPSRTIQTICL
PSMYNDPQFGTSCEITGFGKENSTDYLYPEQLKMTVVKLISHRECQQPHYYGSEVTTKML
CAADPQWKTDSCQGDSGGPLVCSLQGRMTLTGIVSWGRGCALKDKPGVYTRVSHFLPWIR
SHTKEENGLAL
Function Specifically cleaves the zymogen plasminogen to form the active enzyme plasmin.
Tissue Specificity Expressed in the prostate gland and prostate cancers.
KEGG Pathway
NF-kappa B sig.ling pathway (hsa04064 )
Complement and coagulation cascades (hsa04610 )
Transcriptio.l misregulation in cancer (hsa05202 )
Proteoglycans in cancer (hsa05205 )
MicroR.s in cancer (hsa05206 )
Prostate cancer (hsa05215 )
Reactome Pathway
Dissolution of Fibrin Clot (R-HSA-75205 )
Neutrophil degranulation (R-HSA-6798695 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Quebec platelet disorder DIS2BK72 Moderate Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitomycin DMH0ZJE Approved Urokinase-type plasminogen activator (PLAU) affects the response to substance of Mitomycin. [61]
Vinblastine DM5TVS3 Approved Urokinase-type plasminogen activator (PLAU) affects the response to substance of Vinblastine. [61]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Urokinase-type plasminogen activator (PLAU). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Urokinase-type plasminogen activator (PLAU). [42]
------------------------------------------------------------------------------------
65 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Urokinase-type plasminogen activator (PLAU). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Urokinase-type plasminogen activator (PLAU). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Urokinase-type plasminogen activator (PLAU). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Urokinase-type plasminogen activator (PLAU). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Urokinase-type plasminogen activator (PLAU). [7]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Urokinase-type plasminogen activator (PLAU). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Urokinase-type plasminogen activator (PLAU). [9]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Urokinase-type plasminogen activator (PLAU). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Urokinase-type plasminogen activator (PLAU). [11]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Urokinase-type plasminogen activator (PLAU). [12]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Urokinase-type plasminogen activator (PLAU). [13]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Urokinase-type plasminogen activator (PLAU). [14]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Urokinase-type plasminogen activator (PLAU). [15]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Urokinase-type plasminogen activator (PLAU). [16]
Progesterone DMUY35B Approved Progesterone decreases the expression of Urokinase-type plasminogen activator (PLAU). [17]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Urokinase-type plasminogen activator (PLAU). [18]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Urokinase-type plasminogen activator (PLAU). [12]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Urokinase-type plasminogen activator (PLAU). [19]
Folic acid DMEMBJC Approved Folic acid affects the expression of Urokinase-type plasminogen activator (PLAU). [20]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Urokinase-type plasminogen activator (PLAU). [21]
Etoposide DMNH3PG Approved Etoposide increases the expression of Urokinase-type plasminogen activator (PLAU). [22]
Nicotine DMWX5CO Approved Nicotine increases the expression of Urokinase-type plasminogen activator (PLAU). [24]
Dasatinib DMJV2EK Approved Dasatinib decreases the expression of Urokinase-type plasminogen activator (PLAU). [25]
Malathion DMXZ84M Approved Malathion increases the expression of Urokinase-type plasminogen activator (PLAU). [26]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Urokinase-type plasminogen activator (PLAU). [27]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of Urokinase-type plasminogen activator (PLAU). [28]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of Urokinase-type plasminogen activator (PLAU). [22]
Capsaicin DMGMF6V Approved Capsaicin increases the expression of Urokinase-type plasminogen activator (PLAU). [29]
Sorafenib DMS8IFC Approved Sorafenib decreases the expression of Urokinase-type plasminogen activator (PLAU). [30]
Dactinomycin DM2YGNW Approved Dactinomycin increases the expression of Urokinase-type plasminogen activator (PLAU). [22]
Ardeparin DMYRX8B Approved Ardeparin decreases the expression of Urokinase-type plasminogen activator (PLAU). [31]
Amiloride DMRTSGP Approved Amiloride decreases the activity of Urokinase-type plasminogen activator (PLAU). [32]
Azelaic Acid DMHVL0J Approved Azelaic Acid decreases the expression of Urokinase-type plasminogen activator (PLAU). [33]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Urokinase-type plasminogen activator (PLAU). [34]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Urokinase-type plasminogen activator (PLAU). [35]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Urokinase-type plasminogen activator (PLAU). [36]
Curcumin DMQPH29 Phase 3 Curcumin increases the expression of Urokinase-type plasminogen activator (PLAU). [37]
Atorvastatin DMF28YC Phase 3 Trial Atorvastatin decreases the expression of Urokinase-type plasminogen activator (PLAU). [38]
HMPL-004 DM29XGY Phase 3 HMPL-004 increases the expression of Urokinase-type plasminogen activator (PLAU). [39]
Bardoxolone methyl DMODA2X Phase 3 Bardoxolone methyl increases the expression of Urokinase-type plasminogen activator (PLAU). [39]
I3C DMIGFOR Phase 3 I3C increases the expression of Urokinase-type plasminogen activator (PLAU). [37]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Urokinase-type plasminogen activator (PLAU). [7]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Urokinase-type plasminogen activator (PLAU). [12]
PD-0325901 DM27D4J Phase 2 PD-0325901 decreases the expression of Urokinase-type plasminogen activator (PLAU). [40]
BAICALEIN DM4C7E6 Phase 2 BAICALEIN decreases the activity of Urokinase-type plasminogen activator (PLAU). [41]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Urokinase-type plasminogen activator (PLAU). [43]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Urokinase-type plasminogen activator (PLAU). [44]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Urokinase-type plasminogen activator (PLAU). [45]
SB-431542 DM0YOXQ Preclinical SB-431542 increases the expression of Urokinase-type plasminogen activator (PLAU). [46]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Urokinase-type plasminogen activator (PLAU). [47]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Urokinase-type plasminogen activator (PLAU). [48]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Urokinase-type plasminogen activator (PLAU). [49]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Urokinase-type plasminogen activator (PLAU). [39]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Urokinase-type plasminogen activator (PLAU). [50]
D-glucose DMMG2TO Investigative D-glucose decreases the expression of Urokinase-type plasminogen activator (PLAU). [51]
Phencyclidine DMQBEYX Investigative Phencyclidine decreases the expression of Urokinase-type plasminogen activator (PLAU). [52]
Lithium chloride DMHYLQ2 Investigative Lithium chloride decreases the expression of Urokinase-type plasminogen activator (PLAU). [53]
Chrysin DM7V2LG Investigative Chrysin decreases the expression of Urokinase-type plasminogen activator (PLAU). [54]
CATECHIN DMY38SB Investigative CATECHIN increases the expression of Urokinase-type plasminogen activator (PLAU). [55]
LICOAGROCHACONE A DMWY0TN Investigative LICOAGROCHACONE A decreases the expression of Urokinase-type plasminogen activator (PLAU). [30]
I-BET151 DMYRUH2 Investigative I-BET151 decreases the expression of Urokinase-type plasminogen activator (PLAU). [56]
DIECKOL DMBCK4G Investigative DIECKOL decreases the expression of Urokinase-type plasminogen activator (PLAU). [58]
PFI-1 DMVFK3J Investigative PFI-1 decreases the expression of Urokinase-type plasminogen activator (PLAU). [56]
LPA DMI5XR1 Investigative LPA increases the expression of Urokinase-type plasminogen activator (PLAU). [59]
(E)-10-nitrooctadec-9-enoic acid DMTF7JA Investigative (E)-10-nitrooctadec-9-enoic acid decreases the expression of Urokinase-type plasminogen activator (PLAU). [60]
------------------------------------------------------------------------------------
⏷ Show the Full List of 65 Drug(s)
6 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Irinotecan DMP6SC2 Approved Irinotecan decreases the secretion of Urokinase-type plasminogen activator (PLAU). [23]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the secretion of Urokinase-type plasminogen activator (PLAU). [11]
URSOLIC ACID DM4SOAW Phase 2 URSOLIC ACID decreases the secretion of Urokinase-type plasminogen activator (PLAU). [23]
OLEANOLIC_ACID DMWDMJ3 Investigative OLEANOLIC_ACID decreases the secretion of Urokinase-type plasminogen activator (PLAU). [23]
DEMETHOXYCURCUMIN DMO5UGV Investigative DEMETHOXYCURCUMIN decreases the secretion of Urokinase-type plasminogen activator (PLAU). [57]
NQN-1 DMAXHLK Investigative NQN-1 decreases the secretion of Urokinase-type plasminogen activator (PLAU). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Involvement of ERK1/2 and p38 MAP kinase in doxorubicin-induced uPA expression in human RC-K8 lymphoma and NCI-H69 small cell lung carcinoma cells. Oncology. 2004;67(3-4):310-9. doi: 10.1159/000081332.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
7 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
8 Fetal-sex dependent genomic responses in the circulating lymphocytes of arsenic-exposed pregnant women in New Hampshire. Reprod Toxicol. 2017 Oct;73:184-195. doi: 10.1016/j.reprotox.2017.07.023. Epub 2017 Aug 6.
9 Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochem Funct. 2011 Mar;29(2):87-95. doi: 10.1002/cbf.1725. Epub 2011 Feb 9.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Arsenic trioxide (As2O3) inhibits invasion of HT1080 human fibrosarcoma cells: role of nuclear factor-kappaB and reactive oxygen species. J Cell Biochem. 2005 Aug 1;95(5):955-69. doi: 10.1002/jcb.20452.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
14 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
15 Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2'-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci. 2006 Jan;97(1):64-71.
16 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
17 Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007 Apr;64(7-8):1009-32.
18 Evaluation of developmental toxicity using undifferentiated human embryonic stem cells. J Appl Toxicol. 2015 Feb;35(2):205-18.
19 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
20 Effects of folate deficiency on gene expression in the apoptosis and cancer pathways in colon cancer cells. Carcinogenesis. 2006 May;27(5):916-24. doi: 10.1093/carcin/bgi312. Epub 2005 Dec 16.
21 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
22 Genomic profiling uncovers a molecular pattern for toxicological characterization of mutagens and promutagens in vitro. Toxicol Sci. 2011 Jul;122(1):185-97.
23 Ursolic and oleanolic acids in combination therapy inhibit migration of colon cancer cells through down-regulation of the uPA/uPAR-dependent MMPs pathway. Chem Biol Interact. 2022 Dec 1;368:110202. doi: 10.1016/j.cbi.2022.110202. Epub 2022 Oct 1.
24 Activation of 5-lipoxygenase is required for nicotine mediated epithelial-mesenchymal transition and tumor cell growth. Cancer Lett. 2010 Jun 28;292(2):237-45.
25 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
26 Malathion induced cancer-linked gene expression in human lymphocytes. Environ Res. 2020 Mar;182:109131. doi: 10.1016/j.envres.2020.109131. Epub 2020 Jan 10.
27 Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006 Sep;8(9):758-71.
28 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
29 Capsaicin promotes a more aggressive gene expression phenotype and invasiveness in null-TRPV1 urothelial cancer cells. Carcinogenesis. 2011 May;32(5):686-94. doi: 10.1093/carcin/bgr025. Epub 2011 Feb 10.
30 Synergistic antimetastatic effect of cotreatment with licochalcone A and sorafenib on human hepatocellular carcinoma cells through the inactivation of MKK4/JNK and uPA expression. Environ Toxicol. 2018 Dec;33(12):1237-1244. doi: 10.1002/tox.22630. Epub 2018 Sep 6.
31 Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules. Toxicol Lett. 2016 Jan 5;240(1):32-42. doi: 10.1016/j.toxlet.2015.10.005. Epub 2015 Oct 22.
32 Amplification of urokinase gene in prostate cancer. Cancer Res. 2001 Jul 15;61(14):5340-4.
33 Azelaic acid decreases the fibrinolytic potential of cultured human melanoma cells in vitro. Cancer Lett. 1996 Jun 5;103(2):125-9. doi: 10.1016/0304-3835(96)04185-7.
34 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
35 Resveratrol reduces TNF--induced U373MG human glioma cell invasion through regulating NF-B activation and uPA/uPAR expression. Anticancer Res. 2011 Dec;31(12):4223-30.
36 Molecular mechanisms of action of angiopreventive anti-oxidants on endothelial cells: microarray gene expression analyses. Mutat Res. 2005 Dec 11;591(1-2):198-211.
37 Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Mol Cancer Ther. 2007 Nov;6(11):3071-9. doi: 10.1158/1535-7163.MCT-07-0117.
38 Atorvastatin affects several angiogenic mediators in human endothelial cells. Endothelium. 2005 Sep-Dec;12(5-6):233-41.
39 Mapping the dynamics of Nrf2 antioxidant and NFB inflammatory responses by soft electrophilic chemicals in human liver cells defines the transition from adaptive to adverse responses. Toxicol In Vitro. 2022 Oct;84:105419. doi: 10.1016/j.tiv.2022.105419. Epub 2022 Jun 17.
40 PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature. 2014 Oct 9;514(7521):247-51.
41 Baicalein inhibits the migration and invasive properties of human hepatoma cells. Toxicol Appl Pharmacol. 2011 Sep 15;255(3):316-26. doi: 10.1016/j.taap.2011.07.008. Epub 2011 Jul 23.
42 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
43 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
44 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
45 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
46 Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem. 2015 Apr 3;290(14):8834-48.
47 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
48 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
49 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
50 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
51 Non-nutritional sweeteners effects on endothelial vascular function. Toxicol In Vitro. 2020 Feb;62:104694. doi: 10.1016/j.tiv.2019.104694. Epub 2019 Oct 23.
52 Differential response of Mono Mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environ Health Perspect. 2007 Sep;115(9):1325-32.
53 Early gene response in lithium chloride induced apoptosis. Apoptosis. 2005 Jan;10(1):75-90. doi: 10.1007/s10495-005-6063-x.
54 Chrysin inhibit human melanoma A375.S2 cell migration and invasion via affecting MAPK signaling and NF-B signaling pathway in vitro. Environ Toxicol. 2019 Apr;34(4):434-442. doi: 10.1002/tox.22697. Epub 2018 Dec 22.
55 Polyphyenolics increase t-PA and u-PA gene transcription in cultured human endothelial cells. Alcohol Clin Exp Res. 2001 Feb;25(2):155-62.
56 BRD4 is a novel therapeutic target for liver fibrosis. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15713-8. doi: 10.1073/pnas.1522163112. Epub 2015 Dec 7.
57 Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem. 2009 Feb;20(2):87-95. doi: 10.1016/j.jnutbio.2007.12.003. Epub 2008 May 20.
58 Dieckol inhibits non-small-cell lung cancer cell proliferation and migration by regulating the PI3K/AKT signaling pathway. J Biochem Mol Toxicol. 2019 Aug;33(8):e22346. doi: 10.1002/jbt.22346. Epub 2019 Jul 10.
59 EGFR mediates LPA-induced proteolytic enzyme expression and ovarian cancer invasion: inhibition by resveratrol. Mol Oncol. 2013 Feb;7(1):121-9. doi: 10.1016/j.molonc.2012.10.001. Epub 2012 Oct 23.
60 Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth. J Biol Chem. 2018 Jan 26;293(4):1120-1137. doi: 10.1074/jbc.M117.814368. Epub 2017 Nov 20.
61 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.