General Information of Drug Combination (ID: DC1NKOK)

Drug Combination Name
Amodiaquine Busulfan
Indication
Disease Entry Status REF
Chronic myelogenous leukemia Investigative [1]
Component Drugs Amodiaquine   DME4RA8 Busulfan   DMXYJ9C
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: KBM-7
Zero Interaction Potency (ZIP) Score: 21.66
Bliss Independence Score: 21.66
Loewe Additivity Score: 36.56
LHighest Single Agent (HSA) Score: 36.57

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Amodiaquine
Disease Entry ICD 11 Status REF
Malaria 1F40-1F45 Approved [2]
Middle East Respiratory Syndrome (MERS) 1D64 Preclinical [3]
Severe acute respiratory syndrome (SARS) 1D65 Preclinical [3]
Amodiaquine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Histamine N-methyltransferase (HNMT) TT2B6EV HNMT_HUMAN Inhibitor [6]
------------------------------------------------------------------------------------
Amodiaquine Interacts with 5 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 1A1 (CYP1A1) DE6OQ3W CP1A1_HUMAN Metabolism [7]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [8]
Cytochrome P450 1B1 (CYP1B1) DE9QHP6 CP1B1_HUMAN Metabolism [7]
Glutathione S-transferase mu-4 (GSTM4) DERQ52Z GSTM4_HUMAN Metabolism [9]
Cytochrome P450 102A1 (cyp102) DE4OGUF CPXB_BACMB Metabolism [10]
------------------------------------------------------------------------------------
Amodiaquine Interacts with 34 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Increases Activity [11]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Response To Substance [12]
Cytochrome P450 1A2 (CYP1A2) OTLLBX48 CP1A2_HUMAN Decreases Activity [13]
Cytochrome P450 2C9 (CYP2C9) OTGLBN29 CP2C9_HUMAN Decreases Activity [13]
Cytochrome P450 2C19 (CYP2C19) OTFMJYYE CP2CJ_HUMAN Decreases Activity [13]
Proepiregulin (EREG) OTRM4NQY EREG_HUMAN Increases Expression [14]
Interleukin-1 alpha (IL1A) OTPSGILV IL1A_HUMAN Decreases Expression [14]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Activity [15]
Retinoblastoma-associated protein (RB1) OTQJUJMZ RB_HUMAN Affects Phosphorylation [16]
Cathepsin D (CTSD) OTQZ36F3 CATD_HUMAN Decreases Activity [16]
Procathepsin L (CTSL) OTYTUW29 CATL1_HUMAN Decreases Activity [16]
Cathepsin B (CTSB) OTP9G5QB CATB_HUMAN Decreases Activity [16]
Hepatocyte growth factor receptor (MET) OT7K55MU MET_HUMAN Increases Expression [14]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [12]
Bone morphogenetic protein 6 (BMP6) OT9WN536 BMP6_HUMAN Increases Expression [14]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Affects Expression [16]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Decreases Expression [14]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Affects Expression [16]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Cleavage [12]
Tumor necrosis factor-inducible gene 6 protein (TNFAIP6) OT1SLUZH TSG6_HUMAN Decreases Expression [14]
Transcription factor E2F1 (E2F1) OTLKYBBC E2F1_HUMAN Affects Expression [16]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [12]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Expression [12]
PTB-containing, cubilin and LRP1-interacting protein (PID1) OT5YJ7FI PCLI1_HUMAN Increases Expression [14]
Cytochrome P450 2A6 (CYP2A6) OT52TWG3 CP2A6_HUMAN Increases Metabolism [12]
Cytochrome P450 2E1 (CYP2E1) OTHQ17JG CP2E1_HUMAN Increases Metabolism [12]
Myeloperoxidase (MPO) OTOOXLIN PERM_HUMAN Increases ADR [17]
Cytochrome P450 2B6 (CYP2B6) OTOYO4S7 CP2B6_HUMAN Increases Metabolism [12]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Metabolism [9]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Increases Metabolism [12]
Cytochrome P450 3A7 (CYP3A7) OTTCDHHM CP3A7_HUMAN Increases Metabolism [12]
Cytochrome P450 2A13 (CYP2A13) OTVUDLT3 CP2AD_HUMAN Increases Metabolism [12]
Cytochrome P450 2C18 (CYP2C18) OTY687L9 CP2CI_HUMAN Increases Metabolism [12]
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Increases Metabolism [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 DOT(s)
Indication(s) of Busulfan
Disease Entry ICD 11 Status REF
Chronic myelogenous leukaemia 2A20.0 Approved [4]
Hematologic disease 3C0Z Approved [4]
Immunodeficiency 4A00-4A85 Approved [4]
Leukemia N.A. Approved [4]
Myeloproliferative syndrome 2A22 Approved [5]
Systemic lupus erythematosus 4A40.0 Approved [4]
Systemic sclerosis 4A42 Approved [4]
Neuroblastoma 2D11.2 Investigative [4]
Retinoblastoma 2D02.2 Investigative [4]
Busulfan Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Human Deoxyribonucleic acid (hDNA) TTUTN1I NOUNIPROTAC Modulator [19]
------------------------------------------------------------------------------------
Busulfan Interacts with 6 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [20]
Glutathione S-transferase alpha-1 (GSTA1) DE4ZHS1 GSTA1_HUMAN Metabolism [21]
Glutathione S-transferase alpha-2 (GSTA2) DEH49YS GSTA2_HUMAN Metabolism [22]
Glutathione S-transferase pi (GSTP1) DEK6079 GSTP1_HUMAN Metabolism [23]
Microsomal glutathione S-transferase 2 (MGST2) DE31KMQ MGST2_HUMAN Metabolism [24]
Glutathione S-transferase mu-1 (GSTM1) DEYZEJA GSTM1_HUMAN Metabolism [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
Busulfan Interacts with 34 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Glutathione S-transferase P (GSTP1) OTLP0A0Y GSTP1_HUMAN Affects Abundance [25]
Glutathione S-transferase Mu 1 (GSTM1) OTSBF2MO GSTM1_HUMAN Affects Abundance [25]
Microsomal glutathione S-transferase 2 (MGST2) OT4UGTDO MGST2_HUMAN Decreases Response To Substance [24]
Glutathione S-transferase A1 (GSTA1) OTA7K5XA GSTA1_HUMAN Decreases Response To Substance [26]
Serotransferrin (TF) OT41PEMS TRFE_HUMAN Increases Expression [27]
Inhibin beta A chain (INHBA) OTSP64PQ INHBA_HUMAN Increases Expression [27]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Increases Expression [27]
Antithrombin-III (SERPINC1) OTDFATG0 ANT3_HUMAN Affects Expression [28]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Increases Expression [29]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Increases Expression [29]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [18]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Decreases Activity [30]
Plasminogen activator inhibitor 1 (SERPINE1) OTT0MPQ3 PAI1_HUMAN Increases Expression [29]
Thrombospondin-1 (THBS1) OT0ECWK3 TSP1_HUMAN Increases Expression [29]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [31]
Tissue factor pathway inhibitor (TFPI) OTA0FX16 TFPI1_HUMAN Decreases Expression [29]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Phosphorylation [31]
Cyclic AMP-dependent transcription factor ATF-4 (ATF4) OTRFV19J ATF4_HUMAN Increases Expression [18]
Nuclear factor NF-kappa-B p105 subunit (NFKB1) OTNRRD8I NFKB1_HUMAN Increases Expression [18]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Increases Activity [32]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Increases Activity [32]
Aryl hydrocarbon receptor (AHR) OTFE4EYE AHR_HUMAN Increases Expression [18]
Peroxisome proliferator-activated receptor gamma (PPARG) OTHMARHO PPARG_HUMAN Affects Expression [18]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Increases Expression [32]
Signal transducer and activator of transcription 1-alpha/beta (STAT1) OTLMBUZ6 STAT1_HUMAN Affects Expression [18]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [33]
Signal transducer and activator of transcription 2 (STAT2) OTO9G2RZ STAT2_HUMAN Decreases Expression [18]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Activity [31]
Metal regulatory transcription factor 1 (MTF1) OTJWVLLF MTF1_HUMAN Decreases Expression [18]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Increases Expression [18]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [18]
Pseudouridylate synthase 7 homolog (PUS7) OTE5AQHJ PUS7_HUMAN Increases Expression [34]
DNA repair nuclease/redox regulator APEX1 (APEX1) OT53OI14 APEX1_HUMAN Increases Response To Substance [35]
Rho GDP-dissociation inhibitor 1 (ARHGDIA) OTEXWJDO GDIR1_HUMAN Affects Response To Substance [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Drug information of Amodiaquine, 2008. eduDrugs.
3 Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014 Aug;58(8):4885-93.
4 Busulfan FDA Label
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7136).
6 Effect of amodiaquine, a histamine N-methyltransferase inhibitor, on, Propionibacterium acnes and lipopolysaccharide-induced hepatitis in mice. Eur J Pharmacol. 2007 Mar 8;558(1-3):179-84.
7 Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther. 2002 Feb;300(2):399-407.
8 Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther. 2007 Aug;82(2):197-203.
9 Human glutathione S-transferases- and NAD(P)H:quinone oxidoreductase 1-catalyzed inactivation of reactive quinoneimines of amodiaquine and N-desethylamodiaquine: possible implications for susceptibility to amodiaquine-induced liver toxicity. Toxicol Lett. 2017 Jun 5;275:83-91.
10 The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities. Trends Biotechnol. 2007 Jul;25(7):289-98.
11 Cytochrome P450 1A1/2 induction by antiparasitic drugs: dose-dependent increase in ethoxyresorufin O-deethylase activity and mRNA caused by quinine, primaquine and albendazole in HepG2 cells. Eur J Clin Pharmacol. 2002 Nov;58(8):537-42.
12 Apoptosis contributes to the cytotoxicity induced by amodiaquine and its major metabolite N-desethylamodiaquine in hepatic cells. Toxicol In Vitro. 2020 Feb;62:104669. doi: 10.1016/j.tiv.2019.104669. Epub 2019 Oct 16.
13 Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab Dispos. 2001 Jan;29(1):30-5.
14 An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Arch Toxicol. 2021 Jan;95(1):149-168. doi: 10.1007/s00204-020-02882-4. Epub 2020 Aug 20.
15 High-throughput measurement of the Tp53 response to anticancer drugs and random compounds using a stably integrated Tp53-responsive luciferase reporter. Carcinogenesis. 2002 Jun;23(6):949-57. doi: 10.1093/carcin/23.6.949.
16 The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death. Autophagy. 2013 Dec;9(12):2087-102. doi: 10.4161/auto.26506. Epub 2013 Oct 8.
17 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
18 Direct transcriptomic comparison of xenobiotic metabolism and toxicity pathway induction of airway epithelium models at an air-liquid interface generated from induced pluripotent stem cells and primary bronchial epithelial cells. Cell Biol Toxicol. 2023 Feb;39(1):1-18. doi: 10.1007/s10565-022-09726-0. Epub 2022 May 31.
19 DNA intrastrand cross-link at the 5'-GA-3' sequence formed by busulfan and its role in the cytotoxic effect. Cancer Sci. 2004 May;95(5):454-8.
20 Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy. 1998 Jan-Feb;18(1):84-112.
21 Glutathione S-transferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood. 2004 Sep 1;104(5):1574-7.
22 Endothelial cells do not express GSTA1: potential relevance to busulfan-mediated endothelial damage during haematopoietic stem cell transplantation. Eur J Haematol. 2008 Apr;80(4):299-302.
23 Busulfan conjugation by glutathione S-transferases alpha, mu, and pi. Drug Metab Dispos. 1996 Sep;24(9):1015-9.
24 Overexpression of glutathione-S-transferase, MGSTII, confers resistance to busulfan and melphalan. Cancer Invest. 2005;23(1):19-25.
25 Influence of glutathione S-transferase A1, P1, M1, T1 polymorphisms on oral busulfan pharmacokinetics in children with congenital hemoglobinopathies undergoing hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2010 Dec 1;55(6):1172-9. doi: 10.1002/pbc.22739.
26 Overexpression of glutathione S-transferase A1-1 in ECV 304 cells protects against busulfan mediated G2-arrest and induces tissue factor expression. Br J Pharmacol. 2002 Dec;137(7):1100-6. doi: 10.1038/sj.bjp.0704972.
27 Busulfan induces activin A expression in vitro and in vivo: a possible link to venous occlusive disease. Clin Pharmacol Ther. 2003 Sep;74(3):264-74.
28 Decreased incidence of hepatic veno-occlusive disease and fewer hemostatic derangements associated with intravenous busulfan vs oral busulfan in adults conditioned with busulfan + cyclophosphamide for allogeneic bone marrow transplantation. Ann Hematol. 2005 May;84(5):321-30. doi: 10.1007/s00277-004-0982-4. Epub 2004 Dec 4.
29 Antineoplastic agent busulfan regulates a network of genes related to coagulation and fibrinolysis. Eur J Clin Pharmacol. 2012 Jun;68(6):923-35. doi: 10.1007/s00228-011-1209-y.
30 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
31 Altered gene expression in busulfan-resistant human myeloid leukemia. Leuk Res. 2008 Nov;32(11):1684-97. doi: 10.1016/j.leukres.2008.01.016. Epub 2008 Mar 12.
32 Busulfan selectively induces cellular senescence but not apoptosis in WI38 fibroblasts via a p53-independent but extracellular signal-regulated kinase-p38 mitogen-activated protein kinase-dependent mechanism. J Pharmacol Exp Ther. 2006 Nov;319(2):551-60. doi: 10.1124/jpet.106.107771. Epub 2006 Aug 1.
33 Reduced expression of Rho guanine nucleotide dissociation inhibitor-alpha modulates the cytotoxic effect of busulfan in HEK293 cells. Anticancer Drugs. 2007 Mar;18(3):333-40. doi: 10.1097/CAD.0b013e328011fd7f.
34 CD34+ derived macrophage and dendritic cells display differential responses to paraquat. Toxicol In Vitro. 2021 Sep;75:105198. doi: 10.1016/j.tiv.2021.105198. Epub 2021 Jun 9.
35 Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol Cancer Res. 2009 Jun;7(6):897-906. doi: 10.1158/1541-7786.MCR-08-0519. Epub 2009 May 26.