General Information of Drug Off-Target (DOT) (ID: OT7K55MU)

DOT Name Hepatocyte growth factor receptor (MET)
Synonyms HGF receptor; EC 2.7.10.1; HGF/SF receptor; Proto-oncogene c-Met; Scatter factor receptor; SF receptor; Tyrosine-protein kinase Met
Gene Name MET
Related Disease
Hereditary papillary renal cell carcinoma ( )
Papillary renal cell carcinoma ( )
Autosomal recessive nonsyndromic hearing loss 97 ( )
Hearing loss, autosomal recessive ( )
Osteofibrous dysplasia ( )
Complex neurodevelopmental disorder ( )
Arthrogryposis, distal, IIa 11 ( )
Nonsyndromic genetic hearing loss ( )
UniProt ID
MET_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1FYR ; 1R0P ; 1R1W ; 1SHY ; 1SSL ; 2G15 ; 2RFN ; 2RFS ; 2UZX ; 2UZY ; 2WD1 ; 2WGJ ; 2WKM ; 3A4P ; 3BUX ; 3C1X ; 3CCN ; 3CD8 ; 3CE3 ; 3CTH ; 3CTJ ; 3DKC ; 3DKF ; 3DKG ; 3EFJ ; 3EFK ; 3F66 ; 3F82 ; 3I5N ; 3L8V ; 3LQ8 ; 3Q6U ; 3Q6W ; 3QTI ; 3R7O ; 3RHK ; 3U6H ; 3U6I ; 3VW8 ; 3ZBX ; 3ZC5 ; 3ZCL ; 3ZXZ ; 3ZZE ; 4AOI ; 4AP7 ; 4DEG ; 4DEH ; 4DEI ; 4EEV ; 4GG5 ; 4GG7 ; 4IWD ; 4K3J ; 4KNB ; 4MXC ; 4O3T ; 4O3U ; 4R1V ; 4R1Y ; 4XMO ; 4XYF ; 5DG5 ; 5EOB ; 5EYC ; 5EYD ; 5HLW ; 5HNI ; 5HO6 ; 5HOA ; 5HOR ; 5HTI ; 5LSP ; 5T3Q ; 5UAB ; 5UAD ; 5YA5 ; 6GCU ; 6I04 ; 6SD9 ; 6SDC ; 6SDD ; 6SDE ; 6UBW ; 6WVZ ; 7B3Q ; 7B3T ; 7B3V ; 7B3W ; 7B3Z ; 7B40 ; 7B41 ; 7B42 ; 7B43 ; 7B44 ; 7MO7 ; 7MO8 ; 7MO9 ; 7MOA ; 7MOB ; 7V3R ; 7V3S ; 7Y4T ; 7Y4U ; 8AN8 ; 8ANS ; 8AU3 ; 8AU5 ; 8AW1 ; 8GVJ ; 8OUU ; 8OUV ; 8OV7 ; 8OVZ ; 8OW3 ; 8OWG
EC Number
2.7.10.1
Pfam ID
PF07714 ; PF01437 ; PF01403 ; PF01833
Sequence
MKAPAVLAPGILVLLFTLVQRSNGECKEALAKSEMNVNMKYQLPNFTAETPIQNVILHEH
HIFLGATNYIYVLNEEDLQKVAEYKTGPVLEHPDCFPCQDCSSKANLSGGVWKDNINMAL
VVDTYYDDQLISCGSVNRGTCQRHVFPHNHTADIQSEVHCIFSPQIEEPSQCPDCVVSAL
GAKVLSSVKDRFINFFVGNTINSSYFPDHPLHSISVRRLKETKDGFMFLTDQSYIDVLPE
FRDSYPIKYVHAFESNNFIYFLTVQRETLDAQTFHTRIIRFCSINSGLHSYMEMPLECIL
TEKRKKRSTKKEVFNILQAAYVSKPGAQLARQIGASLNDDILFGVFAQSKPDSAEPMDRS
AMCAFPIKYVNDFFNKIVNKNNVRCLQHFYGPNHEHCFNRTLLRNSSGCEARRDEYRTEF
TTALQRVDLFMGQFSEVLLTSISTFIKGDLTIANLGTSEGRFMQVVVSRSGPSTPHVNFL
LDSHPVSPEVIVEHTLNQNGYTLVITGKKITKIPLNGLGCRHFQSCSQCLSAPPFVQCGW
CHDKCVRSEECLSGTWTQQICLPAIYKVFPNSAPLEGGTRLTICGWDFGFRRNNKFDLKK
TRVLLGNESCTLTLSESTMNTLKCTVGPAMNKHFNMSIIISNGHGTTQYSTFSYVDPVIT
SISPKYGPMAGGTLLTLTGNYLNSGNSRHISIGGKTCTLKSVSNSILECYTPAQTISTEF
AVKLKIDLANRETSIFSYREDPIVYEIHPTKSFISGGSTITGVGKNLNSVSVPRMVINVH
EAGRNFTVACQHRSNSEIICCTTPSLQQLNLQLPLKTKAFFMLDGILSKYFDLIYVHNPV
FKPFEKPVMISMGNENVLEIKGNDIDPEAVKGEVLKVGNKSCENIHLHSEAVLCTVPNDL
LKLNSELNIEWKQAISSTVLGKVIVQPDQNFTGLIAGVVSISTALLLLLGFFLWLKKRKQ
IKDLGSELVRYDARVHTPHLDRLVSARSVSPTTEMVSNESVDYRATFPEDQFPNSSQNGS
CRQVQYPLTDMSPILTSGDSDISSPLLQNTVHIDLSALNPELVQAVQHVVIGPSSLIVHF
NEVIGRGHFGCVYHGTLLDNDGKKIHCAVKSLNRITDIGEVSQFLTEGIIMKDFSHPNVL
SLLGICLRSEGSPLVVLPYMKHGDLRNFIRNETHNPTVKDLIGFGLQVAKGMKYLASKKF
VHRDLAARNCMLDEKFTVKVADFGLARDMYDKEYYSVHNKTGAKLPVKWMALESLQTQKF
TTKSDVWSFGVLLWELMTRGAPPYPDVNTFDITVYLLQGRRLLQPEYCPDPLYEVMLKCW
HPKAEMRPSFSELVSRISAIFSTFIGEHYVHVNATYVNVKCVAPYPSLLSSEDNADDEVD
TRPASFWETS
Function
Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of neuronal precursors, angiogenesis and kidney formation. During skeletal muscle development, it is crucial for the migration of muscle progenitor cells and for the proliferation of secondary myoblasts. In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Promotes also differentiation and proliferation of hematopoietic cells. May regulate cortical bone osteogenesis; (Microbial infection) Acts as a receptor for Listeria monocytogenes internalin InlB, mediating entry of the pathogen into cells.
Tissue Specificity
Expressed in normal hepatocytes as well as in epithelial cells lining the stomach, the small and the large intestine. Found also in basal keratinocytes of esophagus and skin. High levels are found in liver, gastrointestinal tract, thyroid and kidney. Also present in the brain. Expressed in metaphyseal bone (at protein level) .
KEGG Pathway
EGFR tyrosine ki.se inhibitor resistance (hsa01521 )
MAPK sig.ling pathway (hsa04010 )
Ras sig.ling pathway (hsa04014 )
Rap1 sig.ling pathway (hsa04015 )
Calcium sig.ling pathway (hsa04020 )
PI3K-Akt sig.ling pathway (hsa04151 )
Axon guidance (hsa04360 )
Focal adhesion (hsa04510 )
Adherens junction (hsa04520 )
Bacterial invasion of epithelial cells (hsa05100 )
Epithelial cell sig.ling in Helicobacter pylori infection (hsa05120 )
Malaria (hsa05144 )
Pathways in cancer (hsa05200 )
Transcriptio.l misregulation in cancer (hsa05202 )
Proteoglycans in cancer (hsa05205 )
MicroR.s in cancer (hsa05206 )
Chemical carcinogenesis - reactive oxygen species (hsa05208 )
Re.l cell carcinoma (hsa05211 )
Melanoma (hsa05218 )
Non-small cell lung cancer (hsa05223 )
Hepatocellular carcinoma (hsa05225 )
Gastric cancer (hsa05226 )
Central carbon metabolism in cancer (hsa05230 )
Reactome Pathway
Constitutive Signaling by Aberrant PI3K in Cancer (R-HSA-2219530 )
Sema4D mediated inhibition of cell attachment and migration (R-HSA-416550 )
RAF/MAP kinase cascade (R-HSA-5673001 )
MET Receptor Activation (R-HSA-6806942 )
Negative regulation of MET activity (R-HSA-6807004 )
PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling (R-HSA-6811558 )
MET activates RAS signaling (R-HSA-8851805 )
MET activates PI3K/AKT signaling (R-HSA-8851907 )
MET activates PTPN11 (R-HSA-8865999 )
MET activates PTK2 signaling (R-HSA-8874081 )
InlB-mediated entry of Listeria monocytogenes into host cell (R-HSA-8875360 )
MET interacts with TNS proteins (R-HSA-8875513 )
MET activates RAP1 and RAC1 (R-HSA-8875555 )
MET receptor recycling (R-HSA-8875656 )
MET activates STAT3 (R-HSA-8875791 )
MECP2 regulates neuronal receptors and channels (R-HSA-9022699 )
Drug-mediated inhibition of MET activation (R-HSA-9734091 )
PIP3 activates AKT signaling (R-HSA-1257604 )

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hereditary papillary renal cell carcinoma DISP7DUI Definitive Autosomal dominant [1]
Papillary renal cell carcinoma DIS25HBV Definitive Autosomal dominant [2]
Autosomal recessive nonsyndromic hearing loss 97 DIS9NTR8 Strong Autosomal recessive [3]
Hearing loss, autosomal recessive DIS8G9R9 Supportive Autosomal recessive [3]
Osteofibrous dysplasia DISU5HAO Supportive Autosomal dominant [4]
Complex neurodevelopmental disorder DISB9AFI Disputed Autosomal dominant [2]
Arthrogryposis, distal, IIa 11 DISNKNLZ Limited Autosomal dominant [1]
Nonsyndromic genetic hearing loss DISZX61P Limited Autosomal recessive [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Crizotinib DM4F29C Approved Hepatocyte growth factor receptor (MET) increases the response to substance of Crizotinib. [48]
------------------------------------------------------------------------------------
76 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Hepatocyte growth factor receptor (MET). [5]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Hepatocyte growth factor receptor (MET). [6]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Hepatocyte growth factor receptor (MET). [7]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Hepatocyte growth factor receptor (MET). [8]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Hepatocyte growth factor receptor (MET). [9]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Hepatocyte growth factor receptor (MET). [11]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Hepatocyte growth factor receptor (MET). [12]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Hepatocyte growth factor receptor (MET). [13]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Hepatocyte growth factor receptor (MET). [14]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Hepatocyte growth factor receptor (MET). [15]
Triclosan DMZUR4N Approved Triclosan increases the expression of Hepatocyte growth factor receptor (MET). [16]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Hepatocyte growth factor receptor (MET). [17]
Decitabine DMQL8XJ Approved Decitabine decreases the expression of Hepatocyte growth factor receptor (MET). [18]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Hepatocyte growth factor receptor (MET). [19]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Hepatocyte growth factor receptor (MET). [20]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Hepatocyte growth factor receptor (MET). [17]
Aspirin DM672AH Approved Aspirin increases the expression of Hepatocyte growth factor receptor (MET). [19]
Diclofenac DMPIHLS Approved Diclofenac decreases the expression of Hepatocyte growth factor receptor (MET). [17]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Hepatocyte growth factor receptor (MET). [17]
Malathion DMXZ84M Approved Malathion increases the expression of Hepatocyte growth factor receptor (MET). [22]
Benzatropine DMF7EXL Approved Benzatropine increases the expression of Hepatocyte growth factor receptor (MET). [19]
Pioglitazone DMKJ485 Approved Pioglitazone increases the expression of Hepatocyte growth factor receptor (MET). [19]
Prednisolone DMQ8FR2 Approved Prednisolone decreases the expression of Hepatocyte growth factor receptor (MET). [17]
Vitamin C DMXJ7O8 Approved Vitamin C decreases the expression of Hepatocyte growth factor receptor (MET). [24]
Nefazodone DM4ZS8M Approved Nefazodone increases the expression of Hepatocyte growth factor receptor (MET). [19]
Methylprednisolone DM4BDON Approved Methylprednisolone decreases the expression of Hepatocyte growth factor receptor (MET). [17]
Propofol DMB4OLE Approved Propofol increases the expression of Hepatocyte growth factor receptor (MET). [25]
Sevoflurane DMC9O43 Approved Sevoflurane increases the expression of Hepatocyte growth factor receptor (MET). [25]
Mebendazole DMO14SG Approved Mebendazole increases the expression of Hepatocyte growth factor receptor (MET). [19]
Nevirapine DM6HX9B Approved Nevirapine increases the expression of Hepatocyte growth factor receptor (MET). [19]
Clavulanate DM2FGRT Approved Clavulanate increases the expression of Hepatocyte growth factor receptor (MET). [19]
Flutamide DMK0O7U Approved Flutamide increases the expression of Hepatocyte growth factor receptor (MET). [19]
Amodiaquine DME4RA8 Approved Amodiaquine increases the expression of Hepatocyte growth factor receptor (MET). [19]
Etodolac DM6WJO9 Approved Etodolac increases the expression of Hepatocyte growth factor receptor (MET). [19]
Tolcapone DM8MNVO Approved Tolcapone increases the expression of Hepatocyte growth factor receptor (MET). [19]
Zafirlukast DMHNQOG Approved Zafirlukast increases the expression of Hepatocyte growth factor receptor (MET). [19]
Fexofenadine DM17ONX Approved Fexofenadine decreases the expression of Hepatocyte growth factor receptor (MET). [19]
Entacapone DMLBVKQ Approved Entacapone increases the expression of Hepatocyte growth factor receptor (MET). [19]
Trazodone DMK1GBJ Approved Trazodone increases the expression of Hepatocyte growth factor receptor (MET). [19]
Bromfenac DMKB79O Approved Bromfenac increases the expression of Hepatocyte growth factor receptor (MET). [19]
Ethambutol DMR87LC Approved Ethambutol increases the expression of Hepatocyte growth factor receptor (MET). [19]
Fludrocortisone DMUDIR8 Approved Fludrocortisone increases the expression of Hepatocyte growth factor receptor (MET). [19]
Phentolamine DMXYJOB Approved Phentolamine decreases the expression of Hepatocyte growth factor receptor (MET). [19]
Lumiracoxib DM1S4AG Approved Lumiracoxib increases the expression of Hepatocyte growth factor receptor (MET). [19]
Trihexyphenidyl DMB19L8 Approved Trihexyphenidyl increases the expression of Hepatocyte growth factor receptor (MET). [19]
Procyclidine DMHFJDT Approved Procyclidine increases the expression of Hepatocyte growth factor receptor (MET). [19]
Penbutolol DM4ES8F Approved Penbutolol increases the expression of Hepatocyte growth factor receptor (MET). [19]
Phenoxybenzamine DM8KSQH Approved Phenoxybenzamine decreases the expression of Hepatocyte growth factor receptor (MET). [19]
Biperiden DME78OA Approved Biperiden increases the expression of Hepatocyte growth factor receptor (MET). [19]
Aminosalicylic acid DMENSL5 Approved Aminosalicylic acid increases the expression of Hepatocyte growth factor receptor (MET). [19]
Pirprofen DMMOFHT Approved Pirprofen increases the expression of Hepatocyte growth factor receptor (MET). [19]
Protriptyline DMNHTZI Approved Protriptyline increases the expression of Hepatocyte growth factor receptor (MET). [19]
Minoxidil DMA2Z4F Approved Minoxidil decreases the expression of Hepatocyte growth factor receptor (MET). [19]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Hepatocyte growth factor receptor (MET). [20]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Hepatocyte growth factor receptor (MET). [20]
Thymoquinone DMVDTR2 Phase 2/3 Thymoquinone decreases the expression of Hepatocyte growth factor receptor (MET). [28]
Tanespimycin DMNLQHK Phase 2 Tanespimycin decreases the expression of Hepatocyte growth factor receptor (MET). [29]
GDC0941 DM1YAK6 Phase 2 GDC0941 increases the expression of Hepatocyte growth factor receptor (MET). [30]
NVP-AUY922 DMTYXQF Phase 2 NVP-AUY922 decreases the expression of Hepatocyte growth factor receptor (MET). [29]
GDC-0980/RG7422 DMF3MV1 Phase 2 GDC-0980/RG7422 increases the expression of Hepatocyte growth factor receptor (MET). [30]
Amsilarotene DMOB01U Phase 2 Amsilarotene decreases the expression of Hepatocyte growth factor receptor (MET). [31]
IRX4204 DM9SCME Phase 1 IRX4204 decreases the expression of Hepatocyte growth factor receptor (MET). [35]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Hepatocyte growth factor receptor (MET). [36]
Ticrynafen DMLFSTR Withdrawn from market Ticrynafen increases the expression of Hepatocyte growth factor receptor (MET). [19]
Nomifensine DMCP2TS Withdrawn from market Nomifensine decreases the expression of Hepatocyte growth factor receptor (MET). [19]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Hepatocyte growth factor receptor (MET). [38]
Nimesulide DMR1NMD Terminated Nimesulide increases the expression of Hepatocyte growth factor receptor (MET). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Hepatocyte growth factor receptor (MET). [40]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Hepatocyte growth factor receptor (MET). [41]
GALLICACID DM6Y3A0 Investigative GALLICACID decreases the expression of Hepatocyte growth factor receptor (MET). [42]
Nitrobenzanthrone DMN6L70 Investigative Nitrobenzanthrone increases the expression of Hepatocyte growth factor receptor (MET). [43]
Microcystin-LR DMTMLRN Investigative Microcystin-LR increases the expression of Hepatocyte growth factor receptor (MET). [44]
OLEANOLIC_ACID DMWDMJ3 Investigative OLEANOLIC_ACID decreases the expression of Hepatocyte growth factor receptor (MET). [46]
IPRONIAZIDE DM42ENF Investigative IPRONIAZIDE increases the expression of Hepatocyte growth factor receptor (MET). [19]
Oxybutynine DMJPBAX Investigative Oxybutynine decreases the expression of Hepatocyte growth factor receptor (MET). [19]
Tubacin DMYR8SG Investigative Tubacin increases the expression of Hepatocyte growth factor receptor (MET). [47]
------------------------------------------------------------------------------------
⏷ Show the Full List of 76 Drug(s)
11 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Cisplatin decreases the phosphorylation of Hepatocyte growth factor receptor (MET). [10]
Dasatinib DMJV2EK Approved Dasatinib decreases the phosphorylation of Hepatocyte growth factor receptor (MET). [21]
Alitretinoin DMME8LH Approved Alitretinoin increases the phosphorylation of Hepatocyte growth factor receptor (MET). [23]
Cabozantinib DMIYDT4 Approved Cabozantinib decreases the phosphorylation of Hepatocyte growth factor receptor (MET). [26]
Savolitinib DMALFKX Phase 3 Savolitinib decreases the phosphorylation of Hepatocyte growth factor receptor (MET). [27]
XL880 DMHJTR2 Phase 2 XL880 decreases the phosphorylation of Hepatocyte growth factor receptor (MET). [32]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Hepatocyte growth factor receptor (MET). [34]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Hepatocyte growth factor receptor (MET). [37]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Hepatocyte growth factor receptor (MET). [39]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Hepatocyte growth factor receptor (MET). [37]
Apigenin DMI3491 Investigative Apigenin decreases the phosphorylation of Hepatocyte growth factor receptor (MET). [45]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
PIPERINE DMYEAB1 Phase 1/2 PIPERINE affects the binding of Hepatocyte growth factor receptor (MET). [33]
------------------------------------------------------------------------------------

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 A mutation of MET, encoding hepatocyte growth factor receptor, is associated with human DFNB97 hearing loss. J Med Genet. 2015 Aug;52(8):548-52. doi: 10.1136/jmedgenet-2015-103023. Epub 2015 May 4.
4 Mutations Preventing Regulated Exon Skipping in MET Cause Osteofibrous Dysplasia. Am J Hum Genet. 2015 Dec 3;97(6):837-47. doi: 10.1016/j.ajhg.2015.11.001.
5 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
6 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
7 All-trans retinoic acid inhibits the cell proliferation but enhances the cell invasion through up-regulation of c-met in pancreatic cancer cells. Cancer Lett. 2005 Jun 28;224(2):303-10. doi: 10.1016/j.canlet.2004.10.016. Epub 2004 Dec 8.
8 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
9 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
10 HGF/c-Met pathway has a prominent role in mediating antiapoptotic signals through AKT in epithelial ovarian carcinoma. Lab Invest. 2011 Jan;91(1):124-37. doi: 10.1038/labinvest.2010.136. Epub 2010 Jul 26.
11 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
12 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
13 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
14 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
15 Arsenic trioxide and cisplatin synergism increase cytotoxicity in human ovarian cancer cells: therapeutic potential for ovarian cancer. Cancer Sci. 2009 Dec;100(12):2459-64.
16 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
17 Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther. 2009;11(1):R15.
18 DNA methylation inhibits p53-mediated survivin repression. Oncogene. 2009 May 14;28(19):2046-50. doi: 10.1038/onc.2009.62. Epub 2009 Apr 13.
19 An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Arch Toxicol. 2021 Jan;95(1):149-168. doi: 10.1007/s00204-020-02882-4. Epub 2020 Aug 20.
20 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
21 Distinct interactions between c-Src and c-Met in mediating resistance to c-Src inhibition in head and neck cancer. Clin Cancer Res. 2011 Feb 1;17(3):514-24. doi: 10.1158/1078-0432.CCR-10-1617. Epub 2010 Nov 24.
22 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
23 Hepatocyte growth factor receptor signaling mediates the anti-fibrotic action of 9-cis-retinoic acid in glomerular mesangial cells. Am J Pathol. 2005 Oct;167(4):947-57. doi: 10.1016/S0002-9440(10)61185-6.
24 Pharmacologic doses of ascorbic acid repress specificity protein (Sp) transcription factors and Sp-regulated genes in colon cancer cells. Nutr Cancer. 2011;63(7):1133-42. doi: 10.1080/01635581.2011.605984. Epub 2011 Sep 15.
25 The differential cancer growth associated with anaesthetics in a cancer xenograft model of mice: mechanisms and implications of postoperative cancer recurrence. Cell Biol Toxicol. 2023 Aug;39(4):1561-1575. doi: 10.1007/s10565-022-09747-9. Epub 2022 Aug 12.
26 ROS-dependent DNA damage contributes to crizotinib-induced hepatotoxicity via the apoptotic pathway. Toxicol Appl Pharmacol. 2019 Nov 15;383:114768. doi: 10.1016/j.taap.2019.114768. Epub 2019 Oct 19.
27 Dictamnine, a novel c-Met inhibitor, suppresses the proliferation of lung cancer cells by downregulating the PI3K/AKT/mTOR and MAPK signaling pathways. Biochem Pharmacol. 2022 Jan;195:114864. doi: 10.1016/j.bcp.2021.114864. Epub 2021 Nov 30.
28 Thymoquinone suppresses invasion and metastasis in bladder cancer cells by reversing EMT through the Wnt/-catenin signaling pathway. Chem Biol Interact. 2020 Apr 1;320:109022. doi: 10.1016/j.cbi.2020.109022. Epub 2020 Feb 27.
29 Gene expression-based chemical genomics identifies heat-shock protein 90 inhibitors as potential therapeutic drugs in cholangiocarcinoma. Cancer. 2013 Jan 15;119(2):293-303. doi: 10.1002/cncr.27743. Epub 2012 Jul 18.
30 Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res. 2012 Dec 15;18(24):6771-83. doi: 10.1158/1078-0432.CCR-12-2347. Epub 2012 Nov 7.
31 4-[3,5-Bis(trimethylsilyl)benzamido] benzoic acid (TAC-101) inhibits the intrahepatic spread of hepatocellular carcinoma and prolongs the life-span of tumor-bearing animals. Clin Exp Metastasis. 1998 Oct;16(7):633-43. doi: 10.1023/a:1006567229929.
32 LRIG1 modulates cancer cell sensitivity to Smac mimetics by regulating TNF expression and receptor tyrosine kinase signaling. Cancer Res. 2012 Mar 1;72(5):1229-38. doi: 10.1158/0008-5472.CAN-11-2428. Epub 2012 Jan 12.
33 Targeting hepatocellular carcinoma with piperine by radical-mediated mitochondrial pathway of apoptosis: an initro and inivo study. Food Chem Toxicol. 2017 Jul;105:106-118.
34 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
35 A retinoid X receptor (RXR)-selective retinoid reveals that RXR-alpha is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res. 2004;6(5):R546-55. doi: 10.1186/bcr913. Epub 2004 Jul 23.
36 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
37 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
38 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
39 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
40 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
41 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
42 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
43 3-Nitrobenzanthrone promotes malignant transformation in human lung epithelial cells through the epiregulin-signaling pathway. Cell Biol Toxicol. 2022 Oct;38(5):865-887. doi: 10.1007/s10565-021-09612-1. Epub 2021 May 25.
44 Alterations in transcription and protein expressions of HCC-related genes in HepG2 cells caused by microcystin-LR. Toxicol In Vitro. 2017 Apr;40:115-123. doi: 10.1016/j.tiv.2016.12.016. Epub 2017 Jan 3.
45 Apigenin Inhibits Cancer Stem Cell-Like Phenotypes in Human Glioblastoma Cells via Suppression of c-Met Signaling. Phytother Res. 2016 Nov;30(11):1833-1840. doi: 10.1002/ptr.5689. Epub 2016 Jul 29.
46 [Apoptosis effects on human esophageal cancer cells by soyasaponin Bb and its machanism]. Wei Sheng Yan Jiu. 2010 Jul;39(4):444-6.
47 Grouping of histone deacetylase inhibitors and other toxicants disturbing neural crest migration by transcriptional profiling. Neurotoxicology. 2015 Sep;50:56-70.
48 Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther. 2012 Jul;11(7):1557-64. doi: 10.1158/1535-7163.MCT-11-0934. Epub 2012 Jun 22.