General Information of Drug Off-Target (DOT) (ID: OT04OQQJ)

DOT Name monooxygenase MICAL2 (MICAL2)
Synonyms EC 1.14.13.225; MICAL C-terminal-like protein; Mical-cL; Molecule interacting with CasL protein 2; MICAL-2
Gene Name MICAL2
Related Disease
Neoplasm ( )
Advanced cancer ( )
Alzheimer disease ( )
Breast cancer ( )
Colorectal carcinoma ( )
Gastric cancer ( )
Narcolepsy ( )
Prostate cancer ( )
Prostate carcinoma ( )
Prostate neoplasm ( )
Stroke ( )
UniProt ID
MICA2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2E9K; 5SZH; 5SZI; 5SZJ; 5SZK
EC Number
1.14.13.225
Pfam ID
PF12130 ; PF00307 ; PF01494 ; PF00412
Sequence
MGENEDEKQAQAGQVFENFVQASTCKGTLQAFNILTRHLDLDPLDHRNFYSKLKSKVTTW
KAKALWYKLDKRGSHKEYKRGKSCTNTKCLIVGGGPCGLRTAIELAYLGAKVVVVEKRDS
FSRNNVLHLWPFTIHDLRGLGAKKFYGKFCAGSIDHISIRQLQLILFKVALMLGVEIHVN
VEFVKVLEPPEDQENQKIGWRAEFLPTDHSLSEFEFDVIIGADGRRNTLEGFRRKEFRGK
LAIAITANFINRNSTAEAKVEEISGVAFIFNQKFFQDLKEETGIDLENIVYYKDCTHYFV
MTAKKQSLLDKGVIINDYIDTEMLLCAENVNQDNLLSYAREAADFATNYQLPSLDFAMNH
YGQPDVAMFDFTCMYASENAALVRERQAHQLLVALVGDSLLEPFWPMGTGCARGFLAAFD
TAWMVKSWNQGTPPLELLAERESLYRLLPQTTPENINKNFEQYTLDPGTRYPNLNSHCVR
PHQVKHLYITKELEHYPLERLGSVRRSVNLSRKESDIRPSKLLTWCQQQTEGYQHVNVTD
LTTSWRSGLALCAIIHRFRPELINFDSLNEDDAVENNQLAFDVAEREFGIPPVTTGKEMA
SAQEPDKLSMVMYLSKFYELFRGTPLRPVDSWRKNYGENADLSLAKSSISNNYLNLTFPR
KRTPRVDGQTGENDMNKRRRKGFTNLDEPSNFSSRSLGSNQECGSSKEGGNQNKVKSMAN
QLLAKFEESTRNPSLMKQERRVSGIGKPVLCSSSGPPVHSCCPKPEEATPSPSPPLKRQF
PSVVVTGHVLRELKQVSAGSECLSRPWRARAKSDLQLGGTENFATLPSTRPRAQALSGVL
WRLQQVEEKILQKRAQNLANREFHTKNIKEKAAHLASMFGHGDFPQNKLLSKGLSHTHPP
SPPSRLPSPDPAASSSPSTVDSASPARKEKKSPSGFHFHPSHLRTVHPQLTVGKVSSGIG
AAAEVLVNLYMNDHRPKAQATSPDLESMRKSFPLNLGGSDTCYFCKKRVYVMERLSAEGH
FFHRECFRCSICATTLRLAAYTFDCDEGKFYCKPHFIHCKTNSKQRKRRAELKQQREEEA
TWQEQEAPRRDTPTESSCAVAAIGTLEGSPPDEPTSPKRPKSISEPQHSDAEGDAASPLP
SEWTSVRISPGEEAAGQDVLAVRVLVTSEDSSSDTESDYGGSEGSHTEPCEEKPWRPGSP
HLPHTSLGEALSRAVSPQCPEEPRAVHAALQRANSFQSPTPSKYQNWRREFWWSLTPVNK
RTMSPPKDPSPSLPLPSSSSHSSSPPSSSSTSVSGNAPDGSSPPQMTASEPLSQVSRGHP
SPPTPNFRRRAVAQGAPREIPLYLPHHPKPEWAEYCLVSPGEDGLSDPAEMTSDECQPAE
APLGDIGSNHRDPHPIWGKDRSWTGQELSPLAGEDREKGSTGARKEEEGGPVLVKEKLGL
KKLVLTQEQKTMLLDWNDSIPESVHLKAGERISQKSAENGRGGRVLKPVRPLLLPRAAGE
PLPTQRGAQEKMGTPAEQAQGERNVPPPKSPLRLIANAIRRSLEPLLSNSEGGKKAWAKQ
ESKTLPAQACTRSFSLRKTNSNKDGDQHSPGRNQSSAFSPPDPALRTHSLPNRPSKVFPA
LRSPPCSKIEDVPTLLEKVSLQENFPDASKPPKKRISLFSSLRLKDKSFESFLQESRQRK
DIRDLFGSPKRKVLPEDSAQALEKLLQPFKSTSLRQAAPPPPPPPPPPPPPPTAGGADSK
NFPLRAQVTEASSSASSTSSSSADEEFDPQLSLQLKEKKTLRRRKKLEKAMKQLVKQEEL
KRLYKAQAIQRQLEEVEERQRASEIQGVRLEKALRGEADSGTQDEAQLLQEWFKLVLEKN
KLMRYESELLIMAQELELEDHQSRLEQKLREKMLKEESQKDEKDLNEEQEVFTELMQVIE
QRDKLVDSLEEQRIREKAEDQHFESFVFSRGCQLSRT
Function
Methionine monooxygenase that promotes depolymerization of F-actin by mediating oxidation of residues 'Met-44' and 'Met-47' on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. Regulates the disassembly of branched actin networks also by oxidizing ARP3B-containing ARP2/3 complexes leading to ARP3B dissociation from the network. Acts as a key regulator of the SRF signaling pathway elicited by nerve growth factor and serum: mediates oxidation and subsequent depolymerization of nuclear actin, leading to increase MKL1/MRTF-A presence in the nucleus and promote SRF:MKL1/MRTF-A-dependent gene transcription. Does not activate SRF:MKL1/MRTF-A through RhoA.

Molecular Interaction Atlas (MIA) of This DOT

11 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neoplasm DISZKGEW Definitive Biomarker [1]
Advanced cancer DISAT1Z9 Strong Altered Expression [2]
Alzheimer disease DISF8S70 Strong Genetic Variation [3]
Breast cancer DIS7DPX1 Strong Biomarker [4]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [5]
Gastric cancer DISXGOUK Strong Altered Expression [6]
Narcolepsy DISLCNLI Strong Genetic Variation [7]
Prostate cancer DISF190Y Strong Biomarker [8]
Prostate carcinoma DISMJPLE Strong Genetic Variation [8]
Prostate neoplasm DISHDKGQ Strong Biomarker [8]
Stroke DISX6UHX moderate Genetic Variation [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
27 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of monooxygenase MICAL2 (MICAL2). [10]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of monooxygenase MICAL2 (MICAL2). [11]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of monooxygenase MICAL2 (MICAL2). [12]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of monooxygenase MICAL2 (MICAL2). [13]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of monooxygenase MICAL2 (MICAL2). [14]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of monooxygenase MICAL2 (MICAL2). [15]
Estradiol DMUNTE3 Approved Estradiol increases the expression of monooxygenase MICAL2 (MICAL2). [16]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of monooxygenase MICAL2 (MICAL2). [17]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of monooxygenase MICAL2 (MICAL2). [18]
Triclosan DMZUR4N Approved Triclosan decreases the expression of monooxygenase MICAL2 (MICAL2). [19]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of monooxygenase MICAL2 (MICAL2). [20]
Progesterone DMUY35B Approved Progesterone decreases the expression of monooxygenase MICAL2 (MICAL2). [21]
Menadione DMSJDTY Approved Menadione affects the expression of monooxygenase MICAL2 (MICAL2). [18]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the expression of monooxygenase MICAL2 (MICAL2). [22]
Cannabidiol DM0659E Approved Cannabidiol decreases the expression of monooxygenase MICAL2 (MICAL2). [23]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of monooxygenase MICAL2 (MICAL2). [22]
Estrone DM5T6US Approved Estrone increases the expression of monooxygenase MICAL2 (MICAL2). [22]
Mestranol DMG3F94 Approved Mestranol increases the expression of monooxygenase MICAL2 (MICAL2). [22]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of monooxygenase MICAL2 (MICAL2). [24]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of monooxygenase MICAL2 (MICAL2). [22]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of monooxygenase MICAL2 (MICAL2). [25]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of monooxygenase MICAL2 (MICAL2). [26]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of monooxygenase MICAL2 (MICAL2). [27]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of monooxygenase MICAL2 (MICAL2). [29]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of monooxygenase MICAL2 (MICAL2). [30]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of monooxygenase MICAL2 (MICAL2). [31]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of monooxygenase MICAL2 (MICAL2). [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of monooxygenase MICAL2 (MICAL2). [28]
------------------------------------------------------------------------------------

References

1 Overexpression of MICAL2, a novel tumor-promoting factor, accelerates tumor progression through regulating cell proliferation and EMT.J Cancer. 2018 Jan 1;9(3):521-527. doi: 10.7150/jca.22355. eCollection 2018.
2 MICAL2 is expressed in cancer associated neo-angiogenic capillary endothelia and it is required for endothelial cell viability, motility and VEGF response.Biochim Biophys Acta Mol Basis Dis. 2019 Sep 1;1865(9):2111-2124. doi: 10.1016/j.bbadis.2019.04.008. Epub 2019 Apr 18.
3 Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer's disease with OSBPL6, PTPRG, and PDCL3.Mol Psychiatry. 2016 Nov;21(11):1608-1612. doi: 10.1038/mp.2015.218. Epub 2016 Feb 2.
4 MICAL2 promotes breast cancer cell migration by maintaining epidermal growth factor receptor (EGFR) stability and EGFR/P38 signalling activation.Acta Physiol (Oxf). 2018 Feb;222(2). doi: 10.1111/apha.12920. Epub 2017 Aug 19.
5 MICAL2 Mediates p53 Ubiquitin Degradation through Oxidating p53 Methionine 40 and 160 and Promotes Colorectal Cancer Malignance.Theranostics. 2018 Oct 22;8(19):5289-5306. doi: 10.7150/thno.28228. eCollection 2018.
6 MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion.Oncotarget. 2016 Jan 12;7(2):1808-25. doi: 10.18632/oncotarget.6577.
7 Genome-wide association database developed in the Japanese Integrated Database Project.J Hum Genet. 2009 Sep;54(9):543-6. doi: 10.1038/jhg.2009.68. Epub 2009 Jul 24.
8 Expression of novel molecules, MICAL2-PV (MICAL2 prostate cancer variants), increases with high Gleason score and prostate cancer progression.Clin Cancer Res. 2006 May 1;12(9):2767-73. doi: 10.1158/1078-0432.CCR-05-1995.
9 Meta-Analysis of Genome-Wide Association Studies Identifies Genetic Risk Factors for Stroke in African Americans.Stroke. 2015 Aug;46(8):2063-8. doi: 10.1161/STROKEAHA.115.009044. Epub 2015 Jun 18.
10 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
11 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
12 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
13 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
14 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
15 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
16 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
17 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
18 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
19 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
20 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
21 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
22 Moving toward integrating gene expression profiling into high-throughput testing: a gene expression biomarker accurately predicts estrogen receptor alpha modulation in a microarray compendium. Toxicol Sci. 2016 May;151(1):88-103.
23 Gingival Stromal Cells as an In Vitro Model: Cannabidiol Modulates Genes Linked With Amyotrophic Lateral Sclerosis. J Cell Biochem. 2017 Apr;118(4):819-828. doi: 10.1002/jcb.25757. Epub 2016 Nov 28.
24 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
25 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
26 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
27 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
28 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
29 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
30 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
31 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
32 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.