General Information of Drug Off-Target (DOT) (ID: OT2E7A6W)

DOT Name KN motif and ankyrin repeat domain-containing protein 1 (KANK1)
Synonyms Ankyrin repeat domain-containing protein 15; Kidney ankyrin repeat-containing protein
Gene Name KANK1
Related Disease
Alcohol dependence ( )
Breast cancer ( )
Breast carcinoma ( )
Clear cell renal carcinoma ( )
Congenital fibrosis of extraocular muscles ( )
Gastric cancer ( )
Kidney cancer ( )
Malignant peripheral nerve sheath tumor ( )
Neoplasm ( )
Nervous system disease ( )
Neurofibroma ( )
Polycythemia vera ( )
Renal carcinoma ( )
Renal cell carcinoma ( )
Stomach cancer ( )
Thrombocytosis disease ( )
Uterine fibroids ( )
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Nasopharyngeal carcinoma ( )
Nicotine dependence ( )
Spastic quadriplegic cerebral palsy ( )
Intellectual disability ( )
Basal cell carcinoma ( )
Basal cell neoplasm ( )
Cerebral palsy, spastic quadriplegic, 2 ( )
Cholestasis ( )
Invasive breast carcinoma ( )
Neoplasm of esophagus ( )
Nephrotic syndrome ( )
Neurodevelopmental disorder ( )
UniProt ID
KANK1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5YBJ; 5YBU; 8IW0
Pfam ID
PF12796 ; PF12075
Sequence
MAHTTKVNGSASGKAGDILSGDQDKEQKDPYFVETPYGYQLDLDFLKYVDDIQKGNTIKR
LNIQKRRKPSVPCPEPRTTSGQQGIWTSTESLSSSNSDDNKQCPNFLIARSQVTSTPISK
PPPPLETSLPFLTIPENRQLPPPSPQLPKHNLHVTKTLMETRRRLEQERATMQMTPGEFR
RPRLASFGGMGTTSSLPSFVGSGNHNPAKHQLQNGYQGNGDYGSYAPAAPTTSSMGSSIR
HSPLSSGISTPVTNVSPMHLQHIREQMAIALKRLKELEEQVRTIPVLQVKISVLQEEKRQ
LVSQLKNQRAASQINVCGVRKRSYSAGNASQLEQLSRARRSGGELYIDYEEEEMETVEQS
TQRIKEFRQLTADMQALEQKIQDSSCEASSELRENGECRSVAVGAEENMNDIVVYHRGSR
SCKDAAVGTLVEMRNCGVSVTEAMLGVMTEADKEIELQQQTIESLKEKIYRLEVQLRETT
HDREMTKLKQELQAAGSRKKVDKATMAQPLVFSKVVEAVVQTRDQMVGSHMDLVDTCVGT
SVETNSVGISCQPECKNKVVGPELPMNWWIVKERVEMHDRCAGRSVEMCDKSVSVEVSVC
ETGSNTEESVNDLTLLKTNLNLKEVRSIGCGDCSVDVTVCSPKECASRGVNTEAVSQVEA
AVMAVPRTADQDTSTDLEQVHQFTNTETATLIESCTNTCLSTLDKQTSTQTVETRTVAVG
EGRVKDINSSTKTRSIGVGTLLSGHSGFDRPSAVKTKESGVGQININDNYLVGLKMRTIA
CGPPQLTVGLTASRRSVGVGDDPVGESLENPQPQAPLGMMTGLDHYIERIQKLLAEQQTL
LAENYSELAEAFGEPHSQMGSLNSQLISTLSSINSVMKSASTEELRNPDFQKTSLGKITG
NYLGYTCKCGGLQSGSPLSSQTSQPEQEVGTSEGKPISSLDAFPTQEGTLSPVNLTDDQI
AAGLYACTNNESTLKSIMKKKDGNKDSNGAKKNLQFVGINGGYETTSSDDSSSDESSSSE
SDDECDVIEYPLEEEEEEEDEDTRGMAEGHHAVNIEGLKSARVEDEMQVQECEPEKVEIR
ERYELSEKMLSACNLLKNTINDPKALTSKDMRFCLNTLQHEWFRVSSQKSAIPAMVGDYI
AAFEAISPDVLRYVINLADGNGNTALHYSVSHSNFEIVKLLLDADVCNVDHQNKAGYTPI
MLAALAAVEAEKDMRIVEELFGCGDVNAKASQAGQTALMLAVSHGRIDMVKGLLACGADV
NIQDDEGSTALMCASEHGHVEIVKLLLAQPGCNGHLEDNDGSTALSIALEAGHKDIAVLL
YAHVNFAKAQSPGTPRLGRKTSPGPTHRGSFD
Function
Involved in the control of cytoskeleton formation by regulating actin polymerization. Inhibits actin fiber formation and cell migration. Inhibits RhoA activity; the function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes. Inhibits the formation of lamellipodia but not of filopodia; the function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; the function is partially mediated by BAIAP2. Inhibits neurite outgrowth. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. In the nucleus, is involved in beta-catenin-dependent activation of transcription. Potential tumor suppressor for renal cell carcinoma. Regulates Rac signaling pathways.
Tissue Specificity Widely expressed. Isoform 1 is predominantly expressed in heart and kidney. Isoform 2 probably is widely expressed at basic levels.
Reactome Pathway
Signaling by membrane-tethered fusions of PDGFRA or PDGFRB (R-HSA-9673768 )
Estrogen-dependent gene expression (R-HSA-9018519 )

Molecular Interaction Atlas (MIA) of This DOT

31 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Alcohol dependence DIS4ZSCO Strong Biomarker [1]
Breast cancer DIS7DPX1 Strong Altered Expression [2]
Breast carcinoma DIS2UE88 Strong Altered Expression [2]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [3]
Congenital fibrosis of extraocular muscles DISE84PU Strong Genetic Variation [4]
Gastric cancer DISXGOUK Strong Biomarker [5]
Kidney cancer DISBIPKM Strong Altered Expression [6]
Malignant peripheral nerve sheath tumor DIS0JTN6 Strong Biomarker [7]
Neoplasm DISZKGEW Strong Altered Expression [2]
Nervous system disease DISJ7GGT Strong Genetic Variation [8]
Neurofibroma DISIJJMH Strong Biomarker [7]
Polycythemia vera DISB5FPO Strong Genetic Variation [9]
Renal carcinoma DISER9XT Strong Altered Expression [6]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [3]
Stomach cancer DISKIJSX Strong Biomarker [5]
Thrombocytosis disease DISNG0P4 Strong Biomarker [10]
Uterine fibroids DISBZRMJ Strong Genetic Variation [11]
Acute myelogenous leukaemia DISCSPTN moderate Genetic Variation [12]
Advanced cancer DISAT1Z9 moderate Biomarker [13]
Nasopharyngeal carcinoma DISAOTQ0 moderate Biomarker [3]
Nicotine dependence DISZD9W7 moderate Genetic Variation [1]
Spastic quadriplegic cerebral palsy DISBJRHC Supportive Autosomal recessive [14]
Intellectual disability DISMBNXP Disputed Genetic Variation [15]
Basal cell carcinoma DIS7PYN3 Limited Genetic Variation [16]
Basal cell neoplasm DIS37IXW Limited Genetic Variation [16]
Cerebral palsy, spastic quadriplegic, 2 DISPIXK5 Limited Autosomal dominant inheritance with maternal imprinting HP:0012275 [14]
Cholestasis DISDJJWE Limited Biomarker [17]
Invasive breast carcinoma DISANYTW Limited Altered Expression [2]
Neoplasm of esophagus DISOLKAQ Limited Genetic Variation [18]
Nephrotic syndrome DISSPSC2 Limited Genetic Variation [19]
Neurodevelopmental disorder DIS372XH Limited Genetic Variation [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 31 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitomycin DMH0ZJE Approved KN motif and ankyrin repeat domain-containing protein 1 (KANK1) affects the response to substance of Mitomycin. [40]
Vinblastine DM5TVS3 Approved KN motif and ankyrin repeat domain-containing protein 1 (KANK1) affects the response to substance of Vinblastine. [40]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [21]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [33]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [35]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [35]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [22]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [23]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [24]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [25]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [26]
Estradiol DMUNTE3 Approved Estradiol increases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [27]
Quercetin DM3NC4M Approved Quercetin decreases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [28]
Temozolomide DMKECZD Approved Temozolomide increases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [29]
Triclosan DMZUR4N Approved Triclosan decreases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [30]
Menadione DMSJDTY Approved Menadione affects the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [31]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [32]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [34]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [36]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [37]
Milchsaure DM462BT Investigative Milchsaure increases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [38]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of KN motif and ankyrin repeat domain-containing protein 1 (KANK1). [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 ANAPC1 and SLCO3A1 are associated with nicotine dependence: meta-analysis of genome-wide association studies.Drug Alcohol Depend. 2012 Aug 1;124(3):325-32. doi: 10.1016/j.drugalcdep.2012.02.003. Epub 2012 Feb 28.
2 Prognostic significance of KN motif and ankyrin repeat domains 1 (KANK1) in invasive breast cancer.Breast Cancer Res Treat. 2020 Jan;179(2):349-357. doi: 10.1007/s10549-019-05466-8. Epub 2019 Nov 2.
3 Kank1 reexpression induced by 5-Aza-2'-deoxycytidine suppresses nasopharyngeal carcinoma cell proliferation and promotes apoptosis.Int J Clin Exp Pathol. 2015 Feb 1;8(2):1658-65. eCollection 2015.
4 A major mutation of KIF21A associated with congenital fibrosis of the extraocular muscles type 1 (CFEOM1) enhances translocation of Kank1 to the membrane.Biochem Biophys Res Commun. 2009 Sep 4;386(4):639-44. doi: 10.1016/j.bbrc.2009.06.109. Epub 2009 Jun 24.
5 Invivo and invitro inhibition of human gastric cancer progress by upregulating Kank1 gene.Oncol Rep. 2017 Sep;38(3):1663-1669. doi: 10.3892/or.2017.5823. Epub 2017 Jul 17.
6 Upregulation of the Kank1 gene-induced brain glioma apoptosis and blockade of the cell cycle in G0/G1 phase.Int J Oncol. 2014 Mar;44(3):797-804. doi: 10.3892/ijo.2014.2247. Epub 2014 Jan 8.
7 KANK1 inhibits cell growth by inducing apoptosis through regulating CXXC5 in human malignant peripheral nerve sheath tumors.Sci Rep. 2017 Jan 9;7:40325. doi: 10.1038/srep40325.
8 Small interstitial 9p24.3 deletions principally involving KANK1 are likely benign copy number variants.Eur J Med Genet. 2020 Jan;63(1):103618. doi: 10.1016/j.ejmg.2019.01.008. Epub 2019 Jan 23.
9 Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2.Blood. 2005 Nov 15;106(10):3374-6. doi: 10.1182/blood-2005-05-1889. Epub 2005 Aug 4.
10 Multiple oligomerization domains of KANK1-PDGFR are required for JAK2-independent hematopoietic cell proliferation and signaling via STAT5 and ERK.Haematologica. 2011 Oct;96(10):1406-14. doi: 10.3324/haematol.2011.040147. Epub 2011 Jun 17.
11 Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis.Nat Commun. 2019 Oct 24;10(1):4857. doi: 10.1038/s41467-019-12536-4.
12 Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia.Oncotarget. 2017 Jan 31;8(5):7891-7899. doi: 10.18632/oncotarget.13631.
13 Upregulation of the Kank1 gene inhibits human lung cancer progression invitro and invivo.Oncol Rep. 2018 Sep;40(3):1243-1250. doi: 10.3892/or.2018.6526. Epub 2018 Jun 26.
14 Deletion of the ANKRD15 gene at 9p24.3 causes parent-of-origin-dependent inheritance of familial cerebral palsy. Hum Mol Genet. 2005 Dec 15;14(24):3911-20. doi: 10.1093/hmg/ddi415. Epub 2005 Nov 21.
15 Familial KANK1 deletion that does not follow expected imprinting pattern.Eur J Med Genet. 2013 May;56(5):256-9. doi: 10.1016/j.ejmg.2013.02.006. Epub 2013 Feb 27.
16 Combined analysis of keratinocyte cancers identifies novel genome-wide loci.Hum Mol Genet. 2019 Sep 15;28(18):3148-3160. doi: 10.1093/hmg/ddz121.
17 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
18 Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions.Nat Genet. 2012 Oct;44(10):1090-7. doi: 10.1038/ng.2411. Epub 2012 Sep 9.
19 Structural insights into ankyrin repeat-mediated recognition of the kinesin motor protein KIF21A by KANK1, a scaffold protein in focal adhesion.J Biol Chem. 2018 Feb 9;293(6):1944-1956. doi: 10.1074/jbc.M117.815779. Epub 2017 Dec 7.
20 Clinical significance of copy number variants involving KANK1 in patients with neurodevelopmental disorders.Eur J Med Genet. 2019 Jan;62(1):15-20. doi: 10.1016/j.ejmg.2018.04.012. Epub 2018 May 3.
21 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
22 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
23 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
24 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
25 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
26 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
27 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
28 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
29 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
30 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
31 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
32 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
33 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
34 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
35 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
36 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
37 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
38 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
39 Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Arch Toxicol. 2012 Apr;86(4):571-89.
40 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.