General Information of Drug Off-Target (DOT) (ID: OT6HZHN7)

DOT Name 26S proteasome non-ATPase regulatory subunit 2 (PSMD2)
Synonyms 26S proteasome regulatory subunit RPN1; 26S proteasome regulatory subunit S2; 26S proteasome subunit p97; Protein 55.11; Tumor necrosis factor type 1 receptor-associated protein 2
Gene Name PSMD2
Related Disease
Hepatocellular carcinoma ( )
Malaria ( )
Non-insulin dependent diabetes ( )
Adult lymphoma ( )
Adult T-cell leukemia/lymphoma ( )
Alzheimer disease ( )
Alzheimer disease 3 ( )
B-cell acute lymphoblastic leukaemia ( )
Breast cancer ( )
Breast carcinoma ( )
Cervical Intraepithelial neoplasia ( )
Endometriosis ( )
Frontotemporal dementia ( )
Glioblastoma multiforme ( )
Inclusion body myopathy with Paget disease of bone and frontotemporal dementia ( )
Inclusion body myopathy with Paget disease of bone and frontotemporal dementia type 1 ( )
Lung cancer ( )
Lung carcinoma ( )
Lymphoma ( )
Mantle cell lymphoma ( )
Pediatric lymphoma ( )
Pick disease ( )
Plasma cell myeloma ( )
Premature aging syndrome ( )
Squamous cell carcinoma ( )
Amyotrophic lateral sclerosis ( )
Cervical carcinoma ( )
Dementia ( )
Herpes simplex infection ( )
Influenza ( )
Lung adenocarcinoma ( )
Gastric cancer ( )
Stomach cancer ( )
Ankylosing spondylitis ( )
Bone Paget disease ( )
Carcinoma ( )
Cervical cancer ( )
Cutaneous squamous cell carcinoma ( )
Enterovirus infection ( )
Melanoma ( )
Myopathy ( )
Nervous system disease ( )
Spinocerebellar ataxia type 3 ( )
UniProt ID
PSMD2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5GJQ ; 5GJR ; 5L4K ; 5LN3 ; 5T0C ; 5T0G ; 5T0H ; 5T0I ; 5T0J ; 5VFP ; 5VFQ ; 5VFR ; 5VFS ; 5VFT ; 5VFU ; 5VHF ; 5VHH ; 5VHI ; 5VHJ ; 5VHM ; 5VHN ; 5VHO ; 5VHP ; 5VHQ ; 5VHR ; 5VHS ; 6MSB ; 6MSD ; 6MSG ; 6MSH ; 6MSJ ; 6MSK ; 6WJD ; 6WJN ; 7QXN ; 7QXP ; 7QXU ; 7QXW ; 7QXX ; 7QY7 ; 7QYA ; 7QYB ; 7UIH ; 7UJD ; 7W37 ; 7W38 ; 7W39 ; 7W3A ; 7W3B ; 7W3C ; 7W3F ; 7W3G ; 7W3H ; 7W3I ; 7W3J ; 7W3K ; 7W3M ; 8CVT
Pfam ID
PF01851 ; PF18051 ; PF17781
Sequence
MEEGGRDKAPVQPQQSPAAAPGGTDEKPSGKERRDAGDKDKEQELSEEDKQLQDELEMLV
ERLGEKDTSLYRPALEELRRQIRSSTTSMTSVPKPLKFLRPHYGKLKEIYENMAPGENKR
FAADIISVLAMTMSGERECLKYRLVGSQEELASWGHEYVRHLAGEVAKEWQELDDAEKVQ
REPLLTLVKEIVPYNMAHNAEHEACDLLMEIEQVDMLEKDIDENAYAKVCLYLTSCVNYV
PEPENSALLRCALGVFRKFSRFPEALRLALMLNDMELVEDIFTSCKDVVVQKQMAFMLGR
HGVFLELSEDVEEYEDLTEIMSNVQLNSNFLALARELDIMEPKVPDDIYKTHLENNRFGG
SGSQVDSARMNLASSFVNGFVNAAFGQDKLLTDDGNKWLYKNKDHGMLSAAASLGMILLW
DVDGGLTQIDKYLYSSEDYIKSGALLACGIVNSGVRNECDPALALLSDYVLHNSNTMRLG
SIFGLGLAYAGSNREDVLTLLLPVMGDSKSSMEVAGVTALACGMIAVGSCNGDVTSTILQ
TIMEKSETELKDTYARWLPLGLGLNHLGKGEAIEAILAALEVVSEPFRSFANTLVDVCAY
AGSGNVLKVQQLLHICSEHFDSKEKEEDKDKKEKKDKDKKEAPADMGAHQGVAVLGIALI
AMGEEIGAEMALRTFGHLLRYGEPTLRRAVPLALALISVSNPRLNILDTLSKFSHDADPE
VSYNSIFAMGMVGSGTNNARLAAMLRQLAQYHAKDPNNLFMVRLAQGLTHLGKGTLTLCP
YHSDRQLMSQVAVAGLLTVLVSFLDVRNIILGKSHYVLYGLVAAMQPRMLVTFDEELRPL
PVSVRVGQAVDVVGQAGKPKTITGFQTHTTPVLLAHGERAELATEEFLPVTPILEGFVIL
RKNPNYDL
Function
Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair; Binds to the intracellular domain of tumor necrosis factor type 1 receptor. The binding domain of TRAP1 and TRAP2 resides outside the death domain of TNFR1.
Tissue Specificity Found in skeletal muscle, liver, heart, brain, kidney, pancreas, lung and placenta.
KEGG Pathway
Proteasome (hsa03050 )
Alzheimer disease (hsa05010 )
Parkinson disease (hsa05012 )
Amyotrophic lateral sclerosis (hsa05014 )
Huntington disease (hsa05016 )
Spinocerebellar ataxia (hsa05017 )
Prion disease (hsa05020 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Epstein-Barr virus infection (hsa05169 )
Reactome Pathway
Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha (R-HSA-1234176 )
ER-Phagosome pathway (R-HSA-1236974 )
Cross-presentation of soluble exogenous antigens (endosomes) (R-HSA-1236978 )
Autodegradation of Cdh1 by Cdh1 (R-HSA-174084 )
SCF-beta-TrCP mediated degradation of Emi1 (R-HSA-174113 )
APC/C (R-HSA-174154 )
APC/C (R-HSA-174178 )
Cdc20 (R-HSA-174184 )
Vpu mediated degradation of CD4 (R-HSA-180534 )
Vif-mediated degradation of APOBEC3G (R-HSA-180585 )
SCF(Skp2)-mediated degradation of p27/p21 (R-HSA-187577 )
Degradation of beta-catenin by the destruction complex (R-HSA-195253 )
Downstream TCR signaling (R-HSA-202424 )
Regulation of activated PAK-2p34 by proteasome mediated degradation (R-HSA-211733 )
Separation of Sister Chromatids (R-HSA-2467813 )
FCERI mediated NF-kB activation (R-HSA-2871837 )
Autodegradation of the E3 ubiquitin ligase COP1 (R-HSA-349425 )
Regulation of ornithine decarboxylase (ODC) (R-HSA-350562 )
ABC-family proteins mediated transport (R-HSA-382556 )
AUF1 (hnRNP D0) binds and destabilizes mRNA (R-HSA-450408 )
Asymmetric localization of PCP proteins (R-HSA-4608870 )
Degradation of AXIN (R-HSA-4641257 )
Degradation of DVL (R-HSA-4641258 )
Hedgehog ligand biogenesis (R-HSA-5358346 )
Hh mutants are degraded by ERAD (R-HSA-5362768 )
Dectin-1 mediated noncanonical NF-kB signaling (R-HSA-5607761 )
CLEC7A (Dectin-1) signaling (R-HSA-5607764 )
Degradation of GLI1 by the proteasome (R-HSA-5610780 )
Degradation of GLI2 by the proteasome (R-HSA-5610783 )
GLI3 is processed to GLI3R by the proteasome (R-HSA-5610785 )
Hedgehog 'on' state (R-HSA-5632684 )
Regulation of RAS by GAPs (R-HSA-5658442 )
TNFR2 non-canonical NF-kB pathway (R-HSA-5668541 )
NIK-->noncanonical NF-kB signaling (R-HSA-5676590 )
Defective CFTR causes cystic fibrosis (R-HSA-5678895 )
MAPK6/MAPK4 signaling (R-HSA-5687128 )
UCH proteinases (R-HSA-5689603 )
Ub-specific processing proteases (R-HSA-5689880 )
Neutrophil degranulation (R-HSA-6798695 )
Assembly of the pre-replicative complex (R-HSA-68867 )
Orc1 removal from chromatin (R-HSA-68949 )
CDK-mediated phosphorylation and removal of Cdc6 (R-HSA-69017 )
G2/M Checkpoints (R-HSA-69481 )
Ubiquitin Mediated Degradation of Phosphorylated Cdc25A (R-HSA-69601 )
Ubiquitin-dependent degradation of Cyclin D (R-HSA-75815 )
The role of GTSE1 in G2/M progression after G2 checkpoint (R-HSA-8852276 )
FBXL7 down-regulates AURKA during mitotic entry and in early mitosis (R-HSA-8854050 )
RUNX1 regulates transcription of genes involved in differentiation of HSCs (R-HSA-8939236 )
Regulation of RUNX2 expression and activity (R-HSA-8939902 )
Regulation of RUNX3 expression and activity (R-HSA-8941858 )
Regulation of PTEN stability and activity (R-HSA-8948751 )
Neddylation (R-HSA-8951664 )
Regulation of expression of SLITs and ROBOs (R-HSA-9010553 )
Interleukin-1 signaling (R-HSA-9020702 )
Negative regulation of NOTCH4 signaling (R-HSA-9604323 )
KEAP1-NFE2L2 pathway (R-HSA-9755511 )
GSK3B and BTRC (R-HSA-9762114 )
Somitogenesis (R-HSA-9824272 )
Antigen processing (R-HSA-983168 )
Activation of NF-kappaB in B cells (R-HSA-1169091 )

Molecular Interaction Atlas (MIA) of This DOT

43 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hepatocellular carcinoma DIS0J828 Definitive Altered Expression [1]
Malaria DISQ9Y50 Definitive Biomarker [2]
Non-insulin dependent diabetes DISK1O5Z Definitive Biomarker [3]
Adult lymphoma DISK8IZR Strong Altered Expression [4]
Adult T-cell leukemia/lymphoma DIS882XU Strong Biomarker [5]
Alzheimer disease DISF8S70 Strong Altered Expression [6]
Alzheimer disease 3 DISVT69G Strong Altered Expression [6]
B-cell acute lymphoblastic leukaemia DISKLOKC Strong Biomarker [7]
Breast cancer DIS7DPX1 Strong Biomarker [8]
Breast carcinoma DIS2UE88 Strong Biomarker [8]
Cervical Intraepithelial neoplasia DISXP757 Strong Posttranslational Modification [9]
Endometriosis DISX1AG8 Strong Altered Expression [10]
Frontotemporal dementia DISKYHXL Strong Genetic Variation [11]
Glioblastoma multiforme DISK8246 Strong Altered Expression [12]
Inclusion body myopathy with Paget disease of bone and frontotemporal dementia DISK4S94 Strong Genetic Variation [13]
Inclusion body myopathy with Paget disease of bone and frontotemporal dementia type 1 DISHQXXA Strong Genetic Variation [14]
Lung cancer DISCM4YA Strong Biomarker [15]
Lung carcinoma DISTR26C Strong Biomarker [15]
Lymphoma DISN6V4S Strong Altered Expression [4]
Mantle cell lymphoma DISFREOV Strong Biomarker [16]
Pediatric lymphoma DIS51BK2 Strong Altered Expression [4]
Pick disease DISP6X50 Strong Genetic Variation [11]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [17]
Premature aging syndrome DIS51AGT Strong Biomarker [18]
Squamous cell carcinoma DISQVIFL Strong Posttranslational Modification [9]
Amyotrophic lateral sclerosis DISF7HVM moderate Genetic Variation [19]
Cervical carcinoma DIST4S00 moderate Biomarker [20]
Dementia DISXL1WY moderate Biomarker [21]
Herpes simplex infection DISL1SAV moderate Altered Expression [22]
Influenza DIS3PNU3 moderate Altered Expression [22]
Lung adenocarcinoma DISD51WR moderate Biomarker [20]
Gastric cancer DISXGOUK Disputed Altered Expression [23]
Stomach cancer DISKIJSX Disputed Altered Expression [23]
Ankylosing spondylitis DISRC6IR Limited Genetic Variation [24]
Bone Paget disease DISIPS4V Limited Genetic Variation [25]
Carcinoma DISH9F1N Limited Biomarker [26]
Cervical cancer DISFSHPF Limited Biomarker [27]
Cutaneous squamous cell carcinoma DIS3LXUG Limited Altered Expression [28]
Enterovirus infection DISH2UDP Limited Biomarker [29]
Melanoma DIS1RRCY Limited Biomarker [30]
Myopathy DISOWG27 Limited Genetic Variation [11]
Nervous system disease DISJ7GGT Limited Genetic Variation [31]
Spinocerebellar ataxia type 3 DISQBQID Limited Biomarker [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 43 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [33]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [34]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [35]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [36]
Quercetin DM3NC4M Approved Quercetin increases the expression of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [37]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [38]
MG-132 DMKA2YS Preclinical MG-132 increases the expression of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [42]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [43]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [44]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [39]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [40]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of 26S proteasome non-ATPase regulatory subunit 2 (PSMD2). [41]
------------------------------------------------------------------------------------

References

1 PSMD1 and PSMD2 regulate HepG2 cell proliferation and apoptosis via modulating cellular lipid droplet metabolism.BMC Mol Biol. 2019 Nov 8;20(1):24. doi: 10.1186/s12867-019-0141-z.
2 Distinct effects of HIV protease inhibitors and ERAD inhibitors on zygote to ookinete transition of the malaria parasite.Mol Biochem Parasitol. 2018 Mar;220:10-14. doi: 10.1016/j.molbiopara.2017.12.003. Epub 2018 Jan 3.
3 A novel TCF7L2 type 2 diabetes SNP identified from fine mapping in African American women.PLoS One. 2017 Mar 2;12(3):e0172577. doi: 10.1371/journal.pone.0172577. eCollection 2017.
4 The Transitional Endoplasmic Reticulum ATPase p97 Regulates the Alternative Nuclear Factor NF-B Signaling via Partial Degradation of the NF-B Subunit p100.J Biol Chem. 2015 Aug 7;290(32):19558-68. doi: 10.1074/jbc.M114.630061. Epub 2015 Jun 25.
5 p53 stabilization and functional impairment in the absence of genetic mutation or the alteration of the p14(ARF)-MDM2 loop in ex vivo and cultured adult T-cell leukemia/lymphoma cells.Blood. 2000 Jun 15;95(12):3939-44.
6 Melanotransferrin is produced by senile plaque-associated reactive microglia in Alzheimer's disease.Brain Res. 1999 Oct 16;845(1):1-5. doi: 10.1016/s0006-8993(99)01767-9.
7 Valosin-Containing Protein/p97 as a Novel Therapeutic Target in Acute Lymphoblastic Leukemia.Neoplasia. 2017 Oct;19(10):750-761. doi: 10.1016/j.neo.2017.08.001. Epub 2017 Aug 29.
8 PSMD2 regulates breast cancer cell proliferation and cell cycle progression by modulating p21 and p27 proteasomal degradation.Cancer Lett. 2018 Aug 28;430:109-122. doi: 10.1016/j.canlet.2018.05.018. Epub 2018 May 17.
9 Human papillomavirus types 16 E1 mRNA is transcribed from P14 early promoter in cervical neoplasms.Virology. 2016 Jan 15;488:196-201. doi: 10.1016/j.virol.2015.11.015. Epub 2015 Dec 2.
10 Bufalin suppresses endometriosis progression by inducing pyroptosis and apoptosis.J Endocrinol. 2018 Jun;237(3):255-269. doi: 10.1530/JOE-17-0700. Epub 2018 Apr 10.
11 A conserved inter-domain communication mechanism regulates the ATPase activity of the AAA-protein Drg1.Sci Rep. 2017 Mar 17;7:44751. doi: 10.1038/srep44751.
12 Epidermal growth factor receptor vIII expression in U87 glioblastoma cells alters their proteasome composition, function, and response to irradiation.Mol Cancer Res. 2008 Mar;6(3):426-34. doi: 10.1158/1541-7786.MCR-07-0313.
13 ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules.Mol Cell. 2018 Jun 7;70(5):906-919.e7. doi: 10.1016/j.molcel.2018.04.021. Epub 2018 May 24.
14 Interaction between the AAA(+) ATPase p97 and its cofactor ataxin3 in health and disease: Nucleotide-induced conformational changes regulate cofactor binding.J Biol Chem. 2017 Nov 10;292(45):18392-18407. doi: 10.1074/jbc.M117.806281. Epub 2017 Sep 22.
15 Proteasomal non-catalytic subunit PSMD2 as a potential therapeutic target in association with various clinicopathologic features in lung adenocarcinomas.Mol Carcinog. 2011 Apr;50(4):301-9. doi: 10.1002/mc.20632.
16 Functional cooperativity of p97 and histone deacetylase 6 in mediating DNA repair in mantle cell lymphoma cells.Leukemia. 2019 Jul;33(7):1675-1686. doi: 10.1038/s41375-018-0355-y. Epub 2019 Jan 21.
17 Novel cell line models to study mechanisms and overcoming strategies of proteasome inhibitor resistance in multiple myeloma.Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1666-1676. doi: 10.1016/j.bbadis.2019.04.003. Epub 2019 Apr 4.
18 The Interplay of Cofactor Interactions and Post-translational Modifications in the Regulation of the AAA+ ATPase p97.Front Mol Biosci. 2017 Apr 13;4:21. doi: 10.3389/fmolb.2017.00021. eCollection 2017.
19 VAPB/ALS8 interacts with FFAT-like proteins including the p97 cofactor FAF1 and the ASNA1 ATPase.BMC Biol. 2014 May 29;12:39. doi: 10.1186/1741-7007-12-39.
20 Tobacco smoke activates human papillomavirus 16 p97 promoter and cooperates with high-risk E6/E7 for oxidative DNA damage in lung cells.PLoS One. 2015 Apr 1;10(4):e0123029. doi: 10.1371/journal.pone.0123029. eCollection 2015.
21 Late-onset autosomal dominant limb girdle muscular dystrophy and Paget's disease of bone unlinked to the VCP gene locus.J Neurol Sci. 2010 Apr 15;291(1-2):79-85. doi: 10.1016/j.jns.2009.12.008. Epub 2010 Feb 8.
22 p97: An Emerging Target for Cancer, Neurodegenerative Diseases, and Viral Infections.J Med Chem. 2020 Mar 12;63(5):1892-1907. doi: 10.1021/acs.jmedchem.9b01318. Epub 2019 Oct 9.
23 Asporin promotes cell proliferation via interacting with PSMD2 in gastric cancer.Front Biosci (Landmark Ed). 2019 Jun 1;24(6):1178-1189. doi: 10.2741/4774.
24 Position 97 of HLA-B, a residue implicated in pathogenesis of ankylosing spondylitis, plays a key role in cell surface free heavy chain expression.Ann Rheum Dis. 2017 Mar;76(3):593-601. doi: 10.1136/annrheumdis-2016-209512. Epub 2016 Aug 11.
25 VCP/p97 increases BMP signaling by accelerating ubiquitin ligase Smurf1 degradation.FASEB J. 2019 Feb;33(2):2928-2943. doi: 10.1096/fj.201801173R. Epub 2018 Oct 18.
26 Comparison of recombinant and synthetically formed monoclonal antibody-beta-lactamase conjugates for anticancer prodrug activation.Bioconjug Chem. 1999 Nov-Dec;10(6):1084-9. doi: 10.1021/bc990075w.
27 CpG methylation of HPV 16 LCR at E2 binding site proximal to P97 is associated with cervical cancer in presence of intact E2.Virology. 2006 Oct 25;354(2):280-5. doi: 10.1016/j.virol.2006.06.018. Epub 2006 Aug 14.
28 The Identification of Potential TherapeuticTargets for Cutaneous SquamousCell Carcinoma.J Invest Dermatol. 2020 Jun;140(6):1154-1165.e5. doi: 10.1016/j.jid.2019.09.024. Epub 2019 Nov 6.
29 Enterovirus 71 protease 2Apro and 3Cpro differentially inhibit the cellular endoplasmic reticulum-associated degradation (ERAD) pathway via distinct mechanisms, and enterovirus 71 hijacks ERAD component p97 to promote its replication.PLoS Pathog. 2017 Oct 6;13(10):e1006674. doi: 10.1371/journal.ppat.1006674. eCollection 2017 Oct.
30 Discrepancy Between Tumor Antigen Distribution and Radiolabeled Antibody Binding in a Nude Mouse Xenograft Model of Human Melanoma.Cancer Biother Radiopharm. 2017 Apr;32(3):83-89. doi: 10.1089/cbr.2016.2115. Epub 2017 Apr 5.
31 Crystal structure of the catalytic D2 domain of the AAA+ ATPase p97 reveals a putative helical split-washer-type mechanism for substrate unfolding.FEBS Lett. 2020 Mar;594(5):933-943. doi: 10.1002/1873-3468.13667. Epub 2019 Nov 22.
32 Imbalances in p97 co-factor interactions in human proteinopathy.EMBO Rep. 2010 Jun;11(6):479-85. doi: 10.1038/embor.2010.49. Epub 2010 Apr 23.
33 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
34 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
35 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
36 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
37 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
38 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
39 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
40 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
41 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
42 Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity. J Biol Chem. 2020 Jan 31;295(5):1271-1287. doi: 10.1074/jbc.RA119.011174. Epub 2019 Dec 5.
43 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
44 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.