General Information of Drug Off-Target (DOT) (ID: OTBHKZQP)

DOT Name SERTA domain-containing protein 1 (SERTAD1)
Synonyms CDK4-binding protein p34SEI1; SEI-1; p34(SEI-1); Transcriptional regulator interacting with the PHD-bromodomain 1; TRIP-Br1
Gene Name SERTAD1
Related Disease
Breast cancer ( )
Breast carcinoma ( )
Colon carcinoma ( )
Colonic neoplasm ( )
Epithelial ovarian cancer ( )
Esophageal cancer ( )
Esophageal squamous cell carcinoma ( )
Head-neck squamous cell carcinoma ( )
HER2/NEU overexpressing breast cancer ( )
Mood disorder ( )
Neoplasm ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Prostate cancer ( )
Prostate carcinoma ( )
Squamous cell carcinoma ( )
Advanced cancer ( )
Colon cancer ( )
UniProt ID
SRTD1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF06031
Sequence
MLSKGLKRKREEEEEKEPLAVDSWWLDPGHTAVAQAPPAVASSSLFDLSVLKLHHSLQQS
EPDLRHLVLVVNTLRRIQASMAPAAALPPVPSPPAAPSVADNLLASSDAALSASMASLLE
DLSHIEGLSQAPQPLADEGPPGRSIGGAAPSLGALDLLGPATGCLLDDGLEGLFEDIDTS
MYDNELWAPASEGLKPGPEDGPGKEEAPELDEAELDYLMDVLVGTQALERPPGPGR
Function
Acts at E2F-responsive promoters as coregulator to integrate signals provided by PHD- and/or bromodomain-containing transcription factors. Stimulates E2F1/TFDP1 transcriptional activity. Renders the activity of cyclin D1/CDK4 resistant to the inhibitory effects of CDKN2A/p16INK4A.

Molecular Interaction Atlas (MIA) of This DOT

18 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Strong Biomarker [1]
Breast carcinoma DIS2UE88 Strong Biomarker [1]
Colon carcinoma DISJYKUO Strong Posttranslational Modification [2]
Colonic neoplasm DISSZ04P Strong Biomarker [3]
Epithelial ovarian cancer DIS56MH2 Strong Altered Expression [4]
Esophageal cancer DISGB2VN Strong Biomarker [5]
Esophageal squamous cell carcinoma DIS5N2GV Strong Altered Expression [5]
Head-neck squamous cell carcinoma DISF7P24 Strong Biomarker [6]
HER2/NEU overexpressing breast cancer DISYKID5 Strong Altered Expression [7]
Mood disorder DISLVMWO Strong Biomarker [8]
Neoplasm DISZKGEW Strong Altered Expression [4]
Ovarian cancer DISZJHAP Strong Altered Expression [4]
Ovarian neoplasm DISEAFTY Strong Altered Expression [4]
Prostate cancer DISF190Y Strong Biomarker [9]
Prostate carcinoma DISMJPLE Strong Biomarker [9]
Squamous cell carcinoma DISQVIFL Strong Biomarker [10]
Advanced cancer DISAT1Z9 Limited Genetic Variation [7]
Colon cancer DISVC52G Limited Posttranslational Modification [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
29 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of SERTA domain-containing protein 1 (SERTAD1). [11]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of SERTA domain-containing protein 1 (SERTAD1). [12]
Tretinoin DM49DUI Approved Tretinoin increases the expression of SERTA domain-containing protein 1 (SERTAD1). [13]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of SERTA domain-containing protein 1 (SERTAD1). [14]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of SERTA domain-containing protein 1 (SERTAD1). [15]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of SERTA domain-containing protein 1 (SERTAD1). [16]
Quercetin DM3NC4M Approved Quercetin increases the expression of SERTA domain-containing protein 1 (SERTAD1). [17]
Temozolomide DMKECZD Approved Temozolomide increases the expression of SERTA domain-containing protein 1 (SERTAD1). [18]
Decitabine DMQL8XJ Approved Decitabine affects the expression of SERTA domain-containing protein 1 (SERTAD1). [19]
Marinol DM70IK5 Approved Marinol decreases the expression of SERTA domain-containing protein 1 (SERTAD1). [20]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of SERTA domain-containing protein 1 (SERTAD1). [21]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of SERTA domain-containing protein 1 (SERTAD1). [22]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of SERTA domain-containing protein 1 (SERTAD1). [23]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of SERTA domain-containing protein 1 (SERTAD1). [24]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of SERTA domain-containing protein 1 (SERTAD1). [25]
Irinotecan DMP6SC2 Approved Irinotecan increases the expression of SERTA domain-containing protein 1 (SERTAD1). [26]
Cidofovir DMA13GD Approved Cidofovir increases the expression of SERTA domain-containing protein 1 (SERTAD1). [21]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of SERTA domain-containing protein 1 (SERTAD1). [21]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of SERTA domain-containing protein 1 (SERTAD1). [21]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of SERTA domain-containing protein 1 (SERTAD1). [27]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of SERTA domain-containing protein 1 (SERTAD1). [28]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of SERTA domain-containing protein 1 (SERTAD1). [29]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of SERTA domain-containing protein 1 (SERTAD1). [30]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of SERTA domain-containing protein 1 (SERTAD1). [31]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of SERTA domain-containing protein 1 (SERTAD1). [32]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of SERTA domain-containing protein 1 (SERTAD1). [33]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of SERTA domain-containing protein 1 (SERTAD1). [34]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of SERTA domain-containing protein 1 (SERTAD1). [35]
QUERCITRIN DM1DH96 Investigative QUERCITRIN increases the expression of SERTA domain-containing protein 1 (SERTAD1). [36]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Drug(s)

References

1 Sulforaphane Decrease of SERTAD1 Expression Triggers G1/S Arrest in Breast Cancer Cells.J Med Food. 2019 May;22(5):444-450. doi: 10.1089/jmf.2018.4195.
2 p34 (SEI-1) inhibits ROS-induced cell death through suppression of ASK1.Cancer Biol Ther. 2011 Sep 1;12(5):421-6. doi: 10.4161/cbt.12.5.15972. Epub 2011 Sep 1.
3 Validation of biomarkers associated with 5-fluorouracil and thymidylate synthase in colorectal cancer.Oncol Rep. 2008 Jan;19(1):257-62.
4 SEI1 induces genomic instability by inhibiting DNA damage response in ovarian cancer.Cancer Lett. 2017 Jan 28;385:271-279. doi: 10.1016/j.canlet.2016.09.032. Epub 2016 Oct 3.
5 Characterization of a novel mechanism of genomic instability involving the SEI1/SET/NM23H1 pathway in esophageal cancers.Cancer Res. 2010 Jul 15;70(14):5695-705. doi: 10.1158/0008-5472.CAN-10-0392. Epub 2010 Jun 22.
6 Coordinated expression of cyclin-dependent kinase-4 and its regulators in human oral tumors.Anticancer Res. 2014 Jul;34(7):3285-92.
7 Prognostic and Clinicopathological Significance of SERTAD1 in Various Types of Cancer Risk: A Systematic Review and Retrospective Analysis.Cancers (Basel). 2019 Mar 8;11(3):337. doi: 10.3390/cancers11030337.
8 Inflammation and neurological disease-related genes are differentially expressed in depressed patients with mood disorders and correlate with morphometric and functional imaging abnormalities.Brain Behav Immun. 2013 Jul;31:161-71. doi: 10.1016/j.bbi.2012.10.007. Epub 2012 Oct 12.
9 Sertad1 promotes prostate cancer progression through binding androgen receptor ligand binding domain.Int J Cancer. 2019 Feb 1;144(3):558-568. doi: 10.1002/ijc.31877. Epub 2018 Oct 31.
10 Dissection of CDK4-binding and transactivation activities of p34(SEI-1) and comparison between functions of p34(SEI-1) and p16(INK4A).Biochemistry. 2005 Oct 11;44(40):13246-56. doi: 10.1021/bi0504658.
11 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
12 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
13 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
14 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
15 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
16 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
17 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
18 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
19 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
20 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
21 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
22 Transcriptional profiling of MCF7 breast cancer cells in response to 5-Fluorouracil: relationship with cell cycle changes and apoptosis, and identification of novel targets of p53. Int J Cancer. 2006 Sep 1;119(5):1164-75.
23 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
24 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
25 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
26 Gene expression profile of colon cancer cell lines treated with SN-38. Chemotherapy. 2010;56(1):17-25. doi: 10.1159/000287353. Epub 2010 Feb 24.
27 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
28 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
29 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
30 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
31 Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem. 2018 Apr 13;293(15):5600-5612.
32 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
33 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
34 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
35 Persistence of epigenomic effects after recovery from repeated treatment with two nephrocarcinogens. Front Genet. 2018 Dec 3;9:558.
36 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.