General Information of Drug Off-Target (DOT) (ID: OTF67VPH)

DOT Name Eukaryotic translation initiation factor 3 subunit B (EIF3B)
Synonyms eIF3b; Eukaryotic translation initiation factor 3 subunit 9; Prt1 homolog; hPrt1; eIF-3-eta; eIF3 p110; eIF3 p116
Gene Name EIF3B
Related Disease
Gastric cancer ( )
Stomach cancer ( )
Advanced cancer ( )
Bladder cancer ( )
Carcinoma ( )
Chronic hepatitis B virus infection ( )
Clear cell renal carcinoma ( )
Colon cancer ( )
Colon carcinoma ( )
Esophageal squamous cell carcinoma ( )
Hepatocellular carcinoma ( )
HIV infectious disease ( )
Non-small-cell lung cancer ( )
Prostate carcinoma ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Adult glioblastoma ( )
Glioblastoma multiforme ( )
Neoplasm ( )
Prostate cancer ( )
Bone osteosarcoma ( )
Osteosarcoma ( )
UniProt ID
EIF3B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2KRB; 2NLW; 5K1H; 6YBT; 6ZMW; 6ZON; 6ZP4; 6ZVJ; 7A09; 7QP6; 7QP7
Pfam ID
PF08662 ; PF00076
Sequence
MQDAENVAVPEAAEERAEPGQQQPAAEPPPAEGLLRPAGPGAPEAAGTEASSEEVGIAEA
GPESEVRTEPAAEAEAASGPSESPSPPAAEELPGSHAEPPVPAQGEAPGEQARDERSDSR
AQAVSEDAGGNEGRAAEAEPRALENGDADEPSFSDPEDFVDDVSEEELLGDVLKDRPQEA
DGIDSVIVVDNVPQVGPDRLEKLKNVIHKIFSKFGKITNDFYPEEDGKTKGYIFLEYASP
AHAVDAVKNADGYKLDKQHTFRVNLFTDFDKYMTISDEWDIPEKQPFKDLGNLRYWLEEA
ECRDQYSVIFESGDRTSIFWNDVKDPVSIEERARWTETYVRWSPKGTYLATFHQRGIALW
GGEKFKQIQRFSHQGVQLIDFSPCERYLVTFSPLMDTQDDPQAIIIWDILTGHKKRGFHC
ESSAHWPIFKWSHDGKFFARMTLDTLSIYETPSMGLLDKKSLKISGIKDFSWSPGGNIIA
FWVPEDKDIPARVTLMQLPTRQEIRVRNLFNVVDCKLHWQKNGDYLCVKVDRTPKGTQGV
VTNFEIFRMREKQVPVDVVEMKETIIAFAWEPNGSKFAVLHGEAPRISVSFYHVKNNGKI
ELIKMFDKQQANTIFWSPQGQFVVLAGLRSMNGALAFVDTSDCTVMNIAEHYMASDVEWD
PTGRYVVTSVSWWSHKVDNAYWLWTFQGRLLQKNNKDRFCQLLWRPRPPTLLSQEQIKQI
KKDLKKYSKIFEQKDRLSQSKASKELVERRRTMMEDFRKYRKMAQELYMEQKNERLELRG
GVDTDELDSNVDDWEEETIEFFVTEEIIPLGNQE
Function
RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression ; (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2.
Reactome Pathway
Translation initiation complex formation (R-HSA-72649 )
Formation of a pool of free 40S subunits (R-HSA-72689 )
Formation of the ternary complex, and subsequently, the 43S complex (R-HSA-72695 )
Ribosomal scanning and start codon recognition (R-HSA-72702 )
GTP hydrolysis and joining of the 60S ribosomal subunit (R-HSA-72706 )
L13a-mediated translational silencing of Ceruloplasmin expression (R-HSA-156827 )

Molecular Interaction Atlas (MIA) of This DOT

22 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Gastric cancer DISXGOUK Definitive Biomarker [1]
Stomach cancer DISKIJSX Definitive Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Bladder cancer DISUHNM0 Strong Altered Expression [3]
Carcinoma DISH9F1N Strong Biomarker [4]
Chronic hepatitis B virus infection DISHL4NT Strong Altered Expression [5]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [6]
Colon cancer DISVC52G Strong Biomarker [7]
Colon carcinoma DISJYKUO Strong Biomarker [7]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [8]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [5]
HIV infectious disease DISO97HC Strong Biomarker [9]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [4]
Prostate carcinoma DISMJPLE Strong Altered Expression [10]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [3]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [3]
Adult glioblastoma DISVP4LU moderate Altered Expression [11]
Glioblastoma multiforme DISK8246 moderate Altered Expression [11]
Neoplasm DISZKGEW moderate Biomarker [1]
Prostate cancer DISF190Y moderate Altered Expression [11]
Bone osteosarcoma DIST1004 Limited Biomarker [10]
Osteosarcoma DISLQ7E2 Limited Biomarker [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [12]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [13]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [14]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [15]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [16]
Quercetin DM3NC4M Approved Quercetin increases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [17]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [18]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [13]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [19]
Marinol DM70IK5 Approved Marinol decreases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [20]
Selenium DM25CGV Approved Selenium increases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [21]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [22]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [19]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [23]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [24]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [21]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [26]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [27]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [23]
PMID28870136-Compound-48 DMPIM9L Patented PMID28870136-Compound-48 increases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [28]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [29]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [30]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
G1 DMTV42K Phase 1/2 G1 decreases the phosphorylation of Eukaryotic translation initiation factor 3 subunit B (EIF3B). [25]
------------------------------------------------------------------------------------

References

1 EIF3B is associated with poor outcomes in gastric cancer patients and promotes cancer progression via the PI3K/AKT/mTOR signaling pathway.Cancer Manag Res. 2019 Aug 21;11:7877-7891. doi: 10.2147/CMAR.S207834. eCollection 2019.
2 The Biological Roles of Translation Initiation Factor 3b.Int J Biol Sci. 2018 Sep 7;14(12):1630-1635. doi: 10.7150/ijbs.26932. eCollection 2018.
3 Translation initiation factor eIF3b expression in human cancer and its role in tumor growth and lung colonization.Clin Cancer Res. 2013 Jun 1;19(11):2850-60. doi: 10.1158/1078-0432.CCR-12-3084. Epub 2013 Apr 10.
4 EIF3B correlates with advanced disease stages and poor prognosis, and it promotes proliferation and inhibits apoptosis in non-small cell lung cancer.Cancer Biomark. 2018;23(2):291-300. doi: 10.3233/CBM-181628.
5 New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors.Eur J Cancer. 2017 Sep;83:56-70. doi: 10.1016/j.ejca.2017.06.003. Epub 2017 Jul 14.
6 Eukaryotic Translation Initiation Factor 3b is both a Promising Prognostic Biomarker and a Potential Therapeutic Target for Patients with Clear Cell Renal Cell Carcinoma.J Cancer. 2017 Sep 2;8(15):3049-3061. doi: 10.7150/jca.19594. eCollection 2017.
7 RNA interference-mediated silencing of eukaryotic translation initiation factor 3, subunit B (EIF3B) gene expression inhibits proliferation of colon cancer cells.World J Surg Oncol. 2012 Jun 26;10:119. doi: 10.1186/1477-7819-10-119.
8 TEX9 and eIF3b functionally synergize to promote the progression of esophageal squamous cell carcinoma.BMC Cancer. 2019 Sep 3;19(1):875. doi: 10.1186/s12885-019-6071-9.
9 Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency.J Virol. 2004 Sep;78(17):9458-73. doi: 10.1128/JVI.78.17.9458-9473.2004.
10 Silencing of translation initiation factor eIF3b promotes apoptosis in osteosarcoma cells.Bone Joint Res. 2017 Mar;6(3):186-193. doi: 10.1302/2046-3758.63.BJR-2016-0151.R2.
11 Inhibition of eukaryotic initiation factor 3B suppresses proliferation and promotes apoptosis of chronic myeloid leukemia cells.Adv Clin Exp Med. 2019 Dec;28(12):1639-1645. doi: 10.17219/acem/110323.
12 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
13 Comparison of the gene expression profiles of monocytic versus granulocytic lineages of HL-60 leukemia cell differentiation by DNA microarray analysis. Life Sci. 2003 Aug 15;73(13):1705-19. doi: 10.1016/s0024-3205(03)00515-0.
14 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
15 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
16 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
17 Identification of biomarkers for the initiation of apoptosis in human preneoplastic colonocytes by proteome analysis. Int J Cancer. 2004 Mar 20;109(2):220-9. doi: 10.1002/ijc.11692.
18 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
19 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
20 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
21 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
22 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
23 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
24 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
25 The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures. Toxicol Sci. 2016 Jun;151(2):434-46. doi: 10.1093/toxsci/kfw057. Epub 2016 Mar 29.
26 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
27 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
28 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
29 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
30 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
31 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.