General Information of Drug Off-Target (DOT) (ID: OTFBU4GD)

DOT Name Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A)
Synonyms PI3K-C2-alpha; PtdIns-3-kinase C2 subunit alpha; EC 2.7.1.137; EC 2.7.1.153; EC 2.7.1.154; Phosphoinositide 3-kinase-C2-alpha
Gene Name PIK3C2A
Related Disease
Abetalipoproteinemia ( )
Acute myocardial infarction ( )
Advanced cancer ( )
Anemia ( )
Breast cancer ( )
Breast carcinoma ( )
Coenzyme Q10 deficiency ( )
Coronary atherosclerosis ( )
Coronary heart disease ( )
Distal myopathy ( )
Duchenne muscular dystrophy ( )
Hepatocellular carcinoma ( )
Hyperphosphatemia ( )
Leukopenia ( )
McLeod neuroacanthocytosis syndrome ( )
Muscular dystrophy ( )
Myeloid leukaemia ( )
Myopathy ( )
Neoplasm ( )
Oculocerebrodental syndrome ( )
Systemic lupus erythematosus ( )
Thrombocytopenia ( )
Gastrointestinal stromal tumour ( )
Bipolar disorder ( )
Kaposi sarcoma ( )
Mental disorder ( )
Non-insulin dependent diabetes ( )
Psychotic disorder ( )
Schizophrenia ( )
UniProt ID
P3C2A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2AR5; 2IWL; 2REA; 2RED; 6BTY; 6BTZ; 6BU0; 6BUB
EC Number
2.7.1.137; 2.7.1.153; 2.7.1.154
Pfam ID
PF00168 ; PF00454 ; PF00792 ; PF00794 ; PF00613 ; PF00787
Sequence
MAQISSNSGFKECPSSHPEPTRAKDVDKEEALQMEAEALAKLQKDRQVTDNQRGFELSSS
TRKKAQVYNKQDYDLMVFPESDSQKRALDIDVEKLTQAELEKLLLDDSFETKKTPVLPVT
PILSPSFSAQLYFRPTIQRGQWPPGLPGPSTYALPSIYPSTYSKQAAFQNGFNPRMPTFP
STEPIYLSLPGQSPYFSYPLTPATPFHPQGSLPIYRPVVSTDMAKLFDKIASTSEFLKNG
KARTDLEITDSKVSNLQVSPKSEDISKFDWLDLDPLSKPKVDNVEVLDHEEEKNVSSLLA
KDPWDAVLLEERSTANCHLERKVNGKSLSVATVTRSQSLNIRTTQLAKAQGHISQKDPNG
TSSLPTGSSLLQEVEVQNEEMAAFCRSITKLKTKFPYTNHRTNPGYLLSPVTAQRNICGE
NASVKVSIDIEGFQLPVTFTCDVSSTVEIIIMQALCWVHDDLNQVDVGSYVLKVCGQEEV
LQNNHCLGSHEHIQNCRKWDTEIRLQLLTFSAMCQNLARTAEDDETPVDLNKHLYQIEKP
CKEAMTRHPVEELLDSYHNQVELALQIENQHRAVDQVIKAVRKICSALDGVETLAITESV
KKLKRAVNLPRSKTADVTSLFGGEDTSRSSTRGSLNPENPVQVSINQLTAAIYDLLRLHA
NSGRSPTDCAQSSKSVKEAWTTTEQLQFTIFAAHGISSNWVSNYEKYYLICSLSHNGKDL
FKPIQSKKVGTYKNFFYLIKWDELIIFPIQISQLPLESVLHLTLFGILNQSSGSSPDSNK
QRKGPEALGKVSLPLFDFKRFLTCGTKLLYLWTSSHTNSVPGTVTKKGYVMERIVLQVDF
PSPAFDIIYTTPQVDRSIIQQHNLETLENDIKGKLLDILHKDSSLGLSKEDKAFLWEKRY
YCFKHPNCLPKILASAPNWKWVNLAKTYSLLHQWPALYPLIALELLDSKFADQEVRSLAV
TWIEAISDDELTDLLPQFVQALKYEIYLNSSLVQFLLSRALGNIQIAHNLYWLLKDALHD
VQFSTRYEHVLGALLSVGGKRLREELLKQTKLVQLLGGVAEKVRQASGSARQVVLQRSME
RVQSFFQKNKCRLPLKPSLVAKELNIKSCSFFSSNAVPLKVTMVNADPMGEEINVMFKVG
EDLRQDMLALQMIKIMDKIWLKEGLDLRMVIFKCLSTGRDRGMVELVPASDTLRKIQVEY
GVTGSFKDKPLAEWLRKYNPSEEEYEKASENFIYSCAGCCVATYVLGICDRHNDNIMLRS
TGHMFHIDFGKFLGHAQMFGSFKRDRAPFVLTSDMAYVINGGEKPTIRFQLFVDLCCQAY
NLIRKQTNLFLNLLSLMIPSGLPELTSIQDLKYVRDALQPQTTDAEATIFFTRLIESSLG
SIATKFNFFIHNLAQLRFSGLPSNDEPILSFSPKTYSFRQDGRIKEVSVFTYHKKYNPDK
HYIYVVRILREGQIEPSFVFRTFDEFQELHNKLSIIFPLWKLPGFPNRMVLGRTHIKDVA
AKRKIELNSYLQSLMNASTDVAECDLVCTFFHPLLRDEKAEGIARSADAGSFSPTPGQIG
GAVKLSISYRNGTLFIMVMHIKDLVTEDGADPNPYVKTYLLPDNHKTSKRKTKISRKTRN
PTFNEMLVYSGYSKETLRQRELQLSVLSAESLRENFFLGGVTLPLKDFNLSKETVKWYQL
TAATYL
Function
Generates phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) that act as second messengers. Has a role in several intracellular trafficking events. Functions in insulin signaling and secretion. Required for translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane and glucose uptake in response to insulin-mediated RHOQ activation. Regulates insulin secretion through two different mechanisms: involved in glucose-induced insulin secretion downstream of insulin receptor in a pathway that involves AKT1 activation and TBC1D4/AS160 phosphorylation, and participates in the late step of insulin granule exocytosis probably in insulin granule fusion. Synthesizes PtdIns3P in response to insulin signaling. Functions in clathrin-coated endocytic vesicle formation and distribution. Regulates dynamin-independent endocytosis, probably by recruiting EEA1 to internalizing vesicles. In neurosecretory cells synthesizes PtdIns3P on large dense core vesicles. Participates in calcium induced contraction of vascular smooth muscle by regulating myosin light chain (MLC) phosphorylation through a mechanism involving Rho kinase-dependent phosphorylation of the MLCP-regulatory subunit MYPT1. May play a role in the EGF signaling cascade. May be involved in mitosis and UV-induced damage response. Required for maintenance of normal renal structure and function by supporting normal podocyte function. Involved in the regulation of ciliogenesis and trafficking of ciliary components.
Tissue Specificity
Expressed in columnar and transitional epithelia, mononuclear cells, smooth muscle cells, and endothelial cells lining capillaries and small venules (at protein level). Ubiquitously expressed, with highest levels in heart, placenta and ovary, and lowest levels in the kidney. Detected at low levels in islets of Langerhans from type 2 diabetes mellitus individuals.
KEGG Pathway
Inositol phosphate metabolism (hsa00562 )
Metabolic pathways (hsa01100 )
Phosphatidylinositol sig.ling system (hsa04070 )
Salmonella infection (hsa05132 )
Reactome Pathway
Synthesis of PIPs at the Golgi membrane (R-HSA-1660514 )
Synthesis of PIPs at the early endosome membrane (R-HSA-1660516 )
Synthesis of PIPs at the late endosome membrane (R-HSA-1660517 )
Golgi Associated Vesicle Biogenesis (R-HSA-432722 )
Clathrin-mediated endocytosis (R-HSA-8856828 )
Synthesis of PIPs at the plasma membrane (R-HSA-1660499 )
BioCyc Pathway
MetaCyc:HS00315-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

29 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Abetalipoproteinemia DISMSS7T Strong Altered Expression [1]
Acute myocardial infarction DISE3HTG Strong Altered Expression [2]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Anemia DISTVL0C Strong Genetic Variation [4]
Breast cancer DIS7DPX1 Strong Biomarker [5]
Breast carcinoma DIS2UE88 Strong Biomarker [5]
Coenzyme Q10 deficiency DIS1HGDF Strong Altered Expression [6]
Coronary atherosclerosis DISKNDYU Strong Altered Expression [2]
Coronary heart disease DIS5OIP1 Strong Altered Expression [2]
Distal myopathy DIS7F5R0 Strong Altered Expression [7]
Duchenne muscular dystrophy DISRQ3NV Strong Altered Expression [8]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [3]
Hyperphosphatemia DISHW3R3 Strong Biomarker [4]
Leukopenia DISJMBMM Strong Altered Expression [9]
McLeod neuroacanthocytosis syndrome DISA8FUX Strong Genetic Variation [10]
Muscular dystrophy DISJD6P7 Strong Biomarker [11]
Myeloid leukaemia DISMN944 Strong Biomarker [12]
Myopathy DISOWG27 Strong Altered Expression [7]
Neoplasm DISZKGEW Strong Biomarker [5]
Oculocerebrodental syndrome DIS9OECG Strong Autosomal recessive [13]
Systemic lupus erythematosus DISI1SZ7 Strong Biomarker [14]
Thrombocytopenia DISU61YW Strong Altered Expression [9]
Gastrointestinal stromal tumour DIS6TJYS moderate Biomarker [15]
Bipolar disorder DISAM7J2 Limited Genetic Variation [16]
Kaposi sarcoma DISC1H1Z Limited Biomarker [17]
Mental disorder DIS3J5R8 Limited Genetic Variation [16]
Non-insulin dependent diabetes DISK1O5Z Limited Altered Expression [18]
Psychotic disorder DIS4UQOT Limited Genetic Variation [16]
Schizophrenia DISSRV2N Limited Genetic Variation [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Ethanol DMDRQZU Approved Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A) increases the Liver injury ADR of Ethanol. [39]
Paclitaxel DMLB81S Approved Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A) affects the response to substance of Paclitaxel. [40]
------------------------------------------------------------------------------------
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [20]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [21]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [22]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [23]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [24]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [25]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [26]
Aspirin DM672AH Approved Aspirin decreases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [27]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [24]
Clorgyline DMCEUJD Approved Clorgyline increases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [28]
Sorafenib DMS8IFC Approved Sorafenib decreases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [29]
Isoflavone DM7U58J Phase 4 Isoflavone increases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [30]
Curcumin DMQPH29 Phase 3 Curcumin decreases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [29]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [32]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [34]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [35]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [36]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [23]
QUERCITRIN DM1DH96 Investigative QUERCITRIN affects the expression of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [37]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [31]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [33]
Octanal DMTN0OK Investigative Octanal increases the methylation of Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A). [38]
------------------------------------------------------------------------------------

References

1 Amyotrophic choreo-acanthocytosis: a new observation in southern Europe.Acta Neurol Scand. 1986 May;73(5):481-6. doi: 10.1111/j.1600-0404.1986.tb04589.x.
2 Low expression of PIK3C2A gene: A potential biomarker to predict the risk of acute myocardial infarction.Medicine (Baltimore). 2019 Apr;98(14):e15061. doi: 10.1097/MD.0000000000015061.
3 PIK3C2A mRNA functions as a miR-124 sponge to facilitate CD151 expression and enhance malignancy of hepatocellular carcinoma cells.Oncotarget. 2016 Jul 12;7(28):43376-43389. doi: 10.18632/oncotarget.9716.
4 A phase Ib study of BGJ398, a pan-FGFR kinase inhibitor in combination with imatinib in patients with advanced gastrointestinal stromal tumor.Invest New Drugs. 2019 Apr;37(2):282-290. doi: 10.1007/s10637-018-0648-z. Epub 2018 Aug 13.
5 Mitotic Spindle Assembly and Genomic Stability in Breast Cancer Require PI3K-C2 Scaffolding Function.Cancer Cell. 2017 Oct 9;32(4):444-459.e7. doi: 10.1016/j.ccell.2017.09.002.
6 Effect of coenzyme Q on serum levels of creatine phosphokinase in preclinical muscular dystrophy.Proc Natl Acad Sci U S A. 1974 May;71(5):2098-102. doi: 10.1073/pnas.71.5.2098.
7 Distal myopathy.Tohoku J Exp Med. 1990 Aug;161 Suppl:1-19. doi: 10.1620/tjem.161.supplement_1.
8 Myoglobinemia in Duchenne muscular dystrophy carriers.Brain Dev. 1980;2(1):87-8. doi: 10.1016/s0387-7604(80)80012-x.
9 Atypical neuroleptic malignant syndrome - A case report.Asian J Psychiatr. 2019 Jun;43:7-8. doi: 10.1016/j.ajp.2019.04.007. Epub 2019 Apr 30.
10 A novel XK gene mutation in a Taiwanese family with McLeod syndrome.J Neurol Sci. 2014 May 15;340(1-2):221-4. doi: 10.1016/j.jns.2014.02.027. Epub 2014 Feb 27.
11 Steroid-CPK test. A new diagnostic aid for muscular dystrophy and its carriers?.Eur Neurol. 1978;17(5):258-64. doi: 10.1159/000114955.
12 Vascular endothelial growth factor receptor-1 and receptor-2 initiate a phosphatidylinositide 3-kinase-dependent clonogenic response in acute myeloid leukemia cells.Exp Hematol. 2004 Jun;32(6):526-35. doi: 10.1016/j.exphem.2004.03.005.
13 Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction. PLoS Genet. 2019 Apr 29;15(4):e1008088. doi: 10.1371/journal.pgen.1008088. eCollection 2019 Apr.
14 Can SLE classification rules be effectively applied to diagnose unclear SLE cases?.Lupus. 2017 Feb;26(2):150-162. doi: 10.1177/0961203316655212. Epub 2016 Jul 11.
15 PIK3C2A is a gene-specific target of microRNA-518a-5p in imatinib mesylate-resistant gastrointestinal stromal tumor.Lab Invest. 2016 Jun;96(6):652-60. doi: 10.1038/labinvest.2015.157. Epub 2016 Mar 7.
16 Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia.Mol Psychiatry. 2014 Sep;19(9):1017-1024. doi: 10.1038/mp.2013.138. Epub 2013 Nov 26.
17 Kaposi's Sarcoma-Associated Herpesvirus Nonstructural Membrane Protein pK15 Recruits the Class II Phosphatidylinositol 3-Kinase PI3K-C2 To Activate Productive Viral Replication.J Virol. 2018 Aug 16;92(17):e00544-18. doi: 10.1128/JVI.00544-18. Print 2018 Sep 1.
18 Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells.J Biol Chem. 2011 Feb 11;286(6):4216-25. doi: 10.1074/jbc.M110.200295. Epub 2010 Dec 2.
19 Whole-exome sequencing of individuals from an isolated population implicates rare risk variants in bipolar disorder.Transl Psychiatry. 2017 Feb 14;7(2):e1034. doi: 10.1038/tp.2017.3.
20 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
21 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
22 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
23 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
24 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
25 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
26 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
27 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
28 Anti-oncogenic and pro-differentiation effects of clorgyline, a monoamine oxidase A inhibitor, on high grade prostate cancer cells. BMC Med Genomics. 2009 Aug 20;2:55. doi: 10.1186/1755-8794-2-55.
29 Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact. 2015 Dec 5;242:107-22.
30 Soy isoflavones exert differential effects on androgen responsive genes in LNCaP human prostate cancer cells. J Nutr. 2007 Apr;137(4):964-72.
31 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
32 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
33 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
34 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
35 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
36 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
37 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.
38 DNA Methylome Analysis of Saturated Aliphatic Aldehydes in Pulmonary Toxicity. Sci Rep. 2018 Jul 12;8(1):10497. doi: 10.1038/s41598-018-28813-z.
39 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
40 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.