General Information of Drug Off-Target (DOT) (ID: OTIBJBW9)

DOT Name Ragulator complex protein LAMTOR1 (LAMTOR1)
Synonyms Late endosomal/lysosomal adaptor and MAPK and MTOR activator 1; Lipid raft adaptor protein p18; Protein associated with DRMs and endosomes; p27Kip1-releasing factor from RhoA; p27RF-Rho
Gene Name LAMTOR1
Related Disease
Angelman syndrome ( )
Meningioma ( )
Acute leukaemia ( )
Acute lymphocytic leukaemia ( )
Adult lymphoma ( )
Bone osteosarcoma ( )
Breast neoplasm ( )
Childhood acute lymphoblastic leukemia ( )
Chromosomal disorder ( )
Depression ( )
Fibrosarcoma ( )
Hepatitis B virus infection ( )
Hepatocellular carcinoma ( )
Hyperparathyroidism ( )
Lassa fever ( )
Lung cancer ( )
Lymphoma ( )
Lymphoma, non-Hodgkin, familial ( )
Malignant soft tissue neoplasm ( )
Melanoma ( )
Myelodysplastic syndrome ( )
Non-hodgkin lymphoma ( )
Non-small-cell lung cancer ( )
Osteosarcoma ( )
Pediatric lymphoma ( )
Psoriatic arthritis ( )
Retinoblastoma ( )
Sarcoma ( )
Status epilepticus seizure ( )
Viral hemorrhagic fever ( )
Advanced cancer ( )
Arterial tortuosity syndrome ( )
Breast cancer ( )
Breast carcinoma ( )
Neuroendocrine neoplasm ( )
Autoimmune disease ( )
Bacterial infection ( )
Familial medullary thyroid carcinoma ( )
Nervous system inflammation ( )
Neuroblastoma ( )
Plasma cell myeloma ( )
UniProt ID
LTOR1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5X6U; 5X6V; 5Y39; 5Y3A; 5YK3; 6B9X; 6EHP; 6EHR; 6NZD; 6U62; 6ULG; 6WJ2; 6WJ3; 7T3A; 7T3B; 7T3C; 7UX2; 7UXC; 7UXH; 8DHB
Pfam ID
PF15454
Sequence
MGCCYSSENEDSDQDREERKLLLDPSSPPTKALNGAEPNYHSLPSARTDEQALLSSILAK
TASNIIDVSAADSQGMEQHEYMDRARQYSTRLAVLSSSLTHWKKLPPLPSLTSQPHQVLA
SEPIPFSDLQQVSRIAAYAYSALSQIRVDAKEELVVQFGIP
Function
Key component of the Ragulator complex, a multiprotein complex involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator plays a dual role for the small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD): it (1) acts as a guanine nucleotide exchange factor (GEF), activating the small GTPases Rag and (2) mediates recruitment of Rag GTPases to the lysosome membrane. Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. LAMTOR1 is directly responsible for anchoring the Ragulator complex to the lysosomal membrane. LAMTOR1 wraps around the other subunits of the Ragulator complex to hold them in place and interacts with the Rag GTPases, thereby playing a key role in the recruitment of the mTORC1 complex to lysosomes. Also involved in the control of embryonic stem cells differentiation via non-canonical RagC/RRAGC and RagD/RRAGD activation: together with FLCN, it is necessary to recruit and activate RagC/RRAGC and RagD/RRAGD at the lysosomes, and to induce exit of embryonic stem cells from pluripotency via non-canonical, mTOR-independent TFE3 inactivation. Also required for late endosomes/lysosomes biogenesis it may regulate both the recycling of receptors through endosomes and the MAPK signaling pathway through recruitment of some of its components to late endosomes. May be involved in cholesterol homeostasis regulating LDL uptake and cholesterol release from late endosomes/lysosomes. May also play a role in RHOA activation.
KEGG Pathway
mTOR sig.ling pathway (hsa04150 )
Reactome Pathway
MTOR signalling (R-HSA-165159 )
mTORC1-mediated signalling (R-HSA-166208 )
Energy dependent regulation of mTOR by LKB1-AMPK (R-HSA-380972 )
TP53 Regulates Metabolic Genes (R-HSA-5628897 )
Neutrophil degranulation (R-HSA-6798695 )
Regulation of PTEN gene transcription (R-HSA-8943724 )
CDC42 GTPase cycle (R-HSA-9013148 )
RAC1 GTPase cycle (R-HSA-9013149 )
RAC2 GTPase cycle (R-HSA-9013404 )
RHOQ GTPase cycle (R-HSA-9013406 )
RHOH GTPase cycle (R-HSA-9013407 )
RHOG GTPase cycle (R-HSA-9013408 )
RHOJ GTPase cycle (R-HSA-9013409 )
RAC3 GTPase cycle (R-HSA-9013423 )
Amino acids regulate mTORC1 (R-HSA-9639288 )
Macroautophagy (R-HSA-1632852 )

Molecular Interaction Atlas (MIA) of This DOT

41 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Angelman syndrome DIS4QVXO Definitive Biomarker [1]
Meningioma DISPT4TG Definitive Genetic Variation [2]
Acute leukaemia DISDQFDI Strong Altered Expression [3]
Acute lymphocytic leukaemia DISPX75S Strong Genetic Variation [3]
Adult lymphoma DISK8IZR Strong Biomarker [4]
Bone osteosarcoma DIST1004 Strong Biomarker [5]
Breast neoplasm DISNGJLM Strong Biomarker [6]
Childhood acute lymphoblastic leukemia DISJ5D6U Strong Genetic Variation [3]
Chromosomal disorder DISM5BB5 Strong Biomarker [7]
Depression DIS3XJ69 Strong Genetic Variation [8]
Fibrosarcoma DISWX7MU Strong Biomarker [9]
Hepatitis B virus infection DISLQ2XY Strong Biomarker [10]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [10]
Hyperparathyroidism DIS4FVAT Strong Altered Expression [11]
Lassa fever DISKFYGZ Strong Biomarker [12]
Lung cancer DISCM4YA Strong Biomarker [13]
Lymphoma DISN6V4S Strong Biomarker [4]
Lymphoma, non-Hodgkin, familial DISCXYIZ Strong Biomarker [14]
Malignant soft tissue neoplasm DISTC6NO Strong Genetic Variation [5]
Melanoma DIS1RRCY Strong Biomarker [15]
Myelodysplastic syndrome DISYHNUI Strong Biomarker [16]
Non-hodgkin lymphoma DISS2Y8A Strong Biomarker [14]
Non-small-cell lung cancer DIS5Y6R9 Strong Genetic Variation [17]
Osteosarcoma DISLQ7E2 Strong Genetic Variation [5]
Pediatric lymphoma DIS51BK2 Strong Biomarker [4]
Psoriatic arthritis DISLWTG2 Strong Biomarker [18]
Retinoblastoma DISVPNPB Strong Biomarker [19]
Sarcoma DISZDG3U Strong Genetic Variation [5]
Status epilepticus seizure DISY3BIC Strong Genetic Variation [20]
Viral hemorrhagic fever DISQEBTU Strong Genetic Variation [21]
Advanced cancer DISAT1Z9 moderate Biomarker [22]
Arterial tortuosity syndrome DISWG36B moderate Biomarker [23]
Breast cancer DIS7DPX1 moderate Biomarker [24]
Breast carcinoma DIS2UE88 moderate Biomarker [24]
Neuroendocrine neoplasm DISNPLOO moderate Altered Expression [25]
Autoimmune disease DISORMTM Limited Biomarker [26]
Bacterial infection DIS5QJ9S Limited Biomarker [27]
Familial medullary thyroid carcinoma DIS01PWX Limited Biomarker [28]
Nervous system inflammation DISB3X5A Limited Biomarker [26]
Neuroblastoma DISVZBI4 Limited Biomarker [29]
Plasma cell myeloma DIS0DFZ0 Limited Biomarker [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Ragulator complex protein LAMTOR1 (LAMTOR1). [31]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Ragulator complex protein LAMTOR1 (LAMTOR1). [32]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Ragulator complex protein LAMTOR1 (LAMTOR1). [33]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Ragulator complex protein LAMTOR1 (LAMTOR1). [34]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Quercetin DM3NC4M Approved Quercetin decreases the phosphorylation of Ragulator complex protein LAMTOR1 (LAMTOR1). [35]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Ragulator complex protein LAMTOR1 (LAMTOR1). [35]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Ragulator complex protein LAMTOR1 (LAMTOR1). [35]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid increases the phosphorylation of Ragulator complex protein LAMTOR1 (LAMTOR1). [36]
------------------------------------------------------------------------------------

References

1 UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity.Elife. 2018 Jul 18;7:e37993. doi: 10.7554/eLife.37993.
2 Molecular analysis of alterations of the p18INK4c gene in human meningiomas.Neuropathol Appl Neurobiol. 2000 Feb;26(1):67-75. doi: 10.1046/j.1365-2990.2000.00219.x.
3 Homozygous deletions of cyclin-dependent kinase inhibitor genes, p16(INK4A) and p18, in childhood T cell lineage acute lymphoblastic leukemias.Leukemia. 1996 Feb;10(2):255-60.
4 Analysis of the novel cyclin-dependent kinase 4 and 6 inhibitor gene p18 in lymphoma and leukemia cell lines.Leuk Res. 1996 Feb;20(2):197-200. doi: 10.1016/0145-2126(95)00137-9.
5 Alterations of the p15, p16,and p18 genes in osteosarcoma.Cancer Genet Cytogenet. 1996 Feb;86(2):136-42. doi: 10.1016/0165-4608(95)00216-2.
6 A p18 mutant defective in CDK6 binding in human breast cancer cells.Cancer Res. 1996 Oct 15;56(20):4586-9.
7 Absence of cyclin-dependent kinase inhibitor p27 or p18 increases efficiency of iPSC generation without induction of iPSC genomic instability.Cell Death Dis. 2019 Mar 20;10(4):271. doi: 10.1038/s41419-019-1502-8.
8 Reliability and Validity of a Material Resources Scale and Its Association With Depression Among Young Men Who Have Sex With Men: The P18 Cohort Study.Am J Mens Health. 2018 Sep;12(5):1384-1397. doi: 10.1177/1557988316651206. Epub 2016 May 25.
9 A p27(kip1)-binding protein, p27RF-Rho, promotes cancer metastasis via activation of RhoA and RhoC.J Biol Chem. 2011 Jan 28;286(4):3139-48. doi: 10.1074/jbc.M110.159715. Epub 2010 Nov 17.
10 Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18.J Biol Chem. 2012 Jul 27;287(31):26302-11. doi: 10.1074/jbc.M112.342113. Epub 2012 Jun 8.
11 Reduced p18INK4c, p21CIP1/WAF1 and p27KIP1 mRNA levels in tumours of primary and secondary hyperparathyroidism.Clin Endocrinol (Oxf). 2004 Mar;60(3):389-93. doi: 10.1111/j.1365-2265.2004.01995.x.
12 Characterization of virulence-associated determinants in the envelope glycoprotein of Pichinde virus.Virology. 2012 Nov 10;433(1):97-103. doi: 10.1016/j.virol.2012.07.009. Epub 2012 Aug 9.
13 Intragenic mutations of the p16(INK4), p15(INK4B) and p18 genes in primary non-small-cell lung cancers.Int J Cancer. 1996 Mar 15;65(6):734-9. doi: 10.1002/(SICI)1097-0215(19960315)65:6<734::AID-IJC4>3.0.CO;2-#.
14 Deletion of cyclin-dependent kinase 4 inhibitor genes P15 and P16 in non-Hodgkin's lymphoma.Blood. 1995 Oct 15;86(8):2900-5.
15 Screening of germline mutations in the CDK4, CDKN2C and TP53 genes in familial melanoma: a clinic-based population study.Int J Cancer. 1998 Sep 25;78(1):13-5. doi: 10.1002/(sici)1097-0215(19980925)78:1<13::aid-ijc3>3.0.co;2-#.
16 Hematopathological alterations of major tumor suppressor cascade, vital cell cycle inhibitors and hematopoietic niche components in experimental myelodysplasia.Chem Biol Interact. 2017 Aug 1;273:1-10. doi: 10.1016/j.cbi.2017.05.014. Epub 2017 May 23.
17 Potentially functional polymorphisms in cell cycle genes and the survival of non-small cell lung cancer in a Chinese population.Lung Cancer. 2011 Jul;73(1):32-7. doi: 10.1016/j.lungcan.2010.11.001. Epub 2010 Dec 9.
18 "Invivo self-assembled" nanoprobes for optimizing autophagy-mediated chemotherapy.Biomaterials. 2017 Oct;141:199-209. doi: 10.1016/j.biomaterials.2017.06.042. Epub 2017 Jun 30.
19 The effect of miR-340 over-expression on cell-cycle-related genes in triple-negative breast cancer cells.Eur J Cancer Care (Engl). 2017 Nov;26(6). doi: 10.1111/ecc.12496. Epub 2016 May 27.
20 Interaction of GABA(A) and GABA(B) antagonists after status epilepticus in immature rats.Epilepsy Behav. 2020 Jan;102:106683. doi: 10.1016/j.yebeh.2019.106683. Epub 2019 Nov 21.
21 Cytokine patterns in a comparative model of arenavirus haemorrhagic fever in guinea pigs.J Gen Virol. 2008 Oct;89(Pt 10):2569-2579. doi: 10.1099/vir.0.2008/002048-0.
22 Host Tumor Suppressor p18(INK4c) Functions as a Potent Cell-Intrinsic Inhibitor of Murine Gammaherpesvirus 68 Reactivation and Pathogenesis.J Virol. 2018 Feb 26;92(6):e01604-17. doi: 10.1128/JVI.01604-17. Print 2018 Mar 15.
23 Oxygen-Induced Retinopathy and Choroidopathy: In Vivo Longitudinal Observation of Vascular Changes Using OCTA.Invest Ophthalmol Vis Sci. 2018 Aug 1;59(10):3932-3942. doi: 10.1167/iovs.18-24320.
24 Indolo-pyrido-isoquinolin based alkaloid inhibits growth, invasion and migration of breast cancer cells via activation ofp53-miR34a axis.Mol Oncol. 2016 Aug;10(7):1118-32. doi: 10.1016/j.molonc.2016.04.003. Epub 2016 May 20.
25 A gene that encodes for a leukemia-associated phosphoprotein (p18) maps to chromosome bands 1p35-36.1.Genes Chromosomes Cancer. 1990 Jul;2(2):125-9. doi: 10.1002/gcc.2870020208.
26 Lamtor1 Is Critically Required for CD4(+) T Cell Proliferation and Regulatory T Cell Suppressive Function.J Immunol. 2017 Sep 15;199(6):2008-2019. doi: 10.4049/jimmunol.1700157. Epub 2017 Aug 2.
27 LAMTOR2/LAMTOR1 complex is required for TAX1BP1-mediated xenophagy.Cell Microbiol. 2019 Apr;21(4):e12981. doi: 10.1111/cmi.12981. Epub 2019 Jan 21.
28 Synergistic effect of oncogenic RET and loss of p18 on medullary thyroid carcinoma development.Cancer Res. 2008 Mar 1;68(5):1329-37. doi: 10.1158/0008-5472.CAN-07-5754.
29 The p16 and p18 tumor suppressor genes in neuroblastoma: implications for drug resistance.Cancer Lett. 1996 Jul 12;104(2):183-92. doi: 10.1016/0304-3835(96)04250-4.
30 Frequent inactivation of the cyclin-dependent kinase inhibitor p18 by homozygous deletion in multiple myeloma cell lines: ectopic p18 expression inhibits growth and induces apoptosis.Leukemia. 2002 Jan;16(1):127-34. doi: 10.1038/sj.leu.2402328.
31 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
32 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
33 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
34 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
35 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
36 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.