General Information of Drug Off-Target (DOT) (ID: OTNJG99Z)

DOT Name Fanconi anemia group M protein (FANCM)
Synonyms Protein FACM; EC 3.6.4.13; ATP-dependent RNA helicase FANCM; Fanconi anemia-associated polypeptide of 250 kDa; FAAP250; Protein Hef ortholog
Gene Name FANCM
Related Disease
Male breast carcinoma ( )
Advanced cancer ( )
Bloom syndrome ( )
Bone osteosarcoma ( )
Burkitt lymphoma ( )
Chronic fatigue syndrome ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Epithelial ovarian cancer ( )
Hereditary breast carcinoma ( )
Male infertility ( )
Neoplasm ( )
Osteosarcoma ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Spermatogenic failure 28 ( )
Triple negative breast cancer ( )
Acute monocytic leukemia ( )
Acute myelogenous leukaemia ( )
Azoospermia ( )
Female hypogonadism ( )
Head and neck cancer ( )
Myelodysplastic syndrome ( )
Pancytopenia ( )
Fanconi's anemia ( )
Obsolete male infertility with azoospermia or oligozoospermia due to single gene mutation ( )
Breast cancer ( )
UniProt ID
FANCM_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4BXO; 4DAY; 4DRB; 4E45; 4M6W
EC Number
3.6.4.13
Pfam ID
PF00270 ; PF02732 ; PF16783 ; PF00271
Sequence
MSGRQRTLFQTWGSSISRSSGTPGCSSGTERPQSPGSSKAPLPAAAEAQLESDDDVLLVA
AYEAERQLCLENGGFCTSAGALWIYPTNCPVRDYQLHISRAALFCNTLVCLPTGLGKTFI
AAVVMYNFYRWFPSGKVVFMAPTKPLVTQQIEACYQVMGIPQSHMAEMTGSTQASTRKEI
WCSKRVLFLTPQVMVNDLSRGACPAAEIKCLVIDEAHKALGNYAYCQVVRELVKYTNHFR
ILALSATPGSDIKAVQQVITNLLIGQIELRSEDSPDILTYSHERKVEKLIVPLGEELAAI
QKTYIQILESFARSLIQRNVLMRRDIPNLTKYQIILARDQFRKNPSPNIVGIQQGIIEGE
FAICISLYHGYELLQQMGMRSLYFFLCGIMDGTKGMTRSKNELGRNEDFMKLYNHLECMF
ARTRSTSANGISAIQQGDKNKKFVYSHPKLKKLEEVVIEHFKSWNAENTTEKKRDETRVM
IFSSFRDSVQEIAEMLSQHQPIIRVMTFVGHASGKSTKGFTQKEQLEVVKQFRDGGYNTL
VSTCVGEEGLDIGEVDLIICFDSQKSPIRLVQRMGRTGRKRQGRIVIILSEGREERIYNQ
SQSNKRSIYKAISSNRQVLHFYQRSPRMVPDGINPKLHKMFITHGVYEPEKPSRNLQRKS
SIFSYRDGMRQSSLKKDWFLSEEEFKLWNRLYRLRDSDEIKEITLPQVQFSSLQNEENKP
AQESTTGIHQLSLSEWRLWQDHPLPTHQVDHSDRCRHFIGLMQMIEGMRHEEGECSYELE
VESYLQMEDVTSTFIAPRNESNNLASDTFITHKKSSFIKNINQGSSSSVIESDEECAEIV
KQTHIKPTKIVSLKKKVSKEIKKDQLKKENNHGIIDSVDNDRNSTVENIFQEDLPNDKRT
SDTDEIAATCTINENVIKEPCVLLTECQFTNKSTSSLAGNVLDSGYNSFNDEKSVSSNLF
LPFEEELYIVRTDDQFYNCHSLTKEVLANVERFLSYSPPPLSGLSDLEYEIAKGTALENL
LFLPCAEHLRSDKCTCLLSHSAVNSQQNLELNSLKCINYPSEKSCLYDIPNDNISDEPSL
CDCDVHKHNQNENLVPNNRVQIHRSPAQNLVGENNHDVDNSDLPVLSTDQDESLLLFEDV
NTEFDDVSLSPLNSKSESLPVSDKTAISETPLVSQFLISDELLLDNNSELQDQITRDANS
FKSRDQRGVQEEKVKNHEDIFDCSRDLFSVTFDLGFCSPDSDDEILEHTSDSNRPLDDLY
GRYLEIKEISDANYVSNQALIPRDHSKNFTSGTVIIPSNEDMQNPNYVHLPLSAAKNEEL
LSPGYSQFSLPVQKKVMSTPLSKSNTLNSFSKIRKEILKTPDSSKEKVNLQRFKEALNST
FDYSEFSLEKSKSSGPMYLHKSCHSVEDGQLLTSNESEDDEIFRRKVKRAKGNVLNSPED
QKNSEVDSPLHAVKKRRFPINRSELSSSDESENFPKPCSQLEDFKVCNGNARRGIKVPKR
QSHLKHVARKFLDDEAELSEEDAEYVSSDENDESENEQDSSLLDFLNDETQLSQAINDSE
MRAIYMKSLRSPMMNNKYKMIHKTHKNINIFSQIPEQDETYLEDSFCVDEEESCKGQSSE
EEVCVDFNLITDDCFANSKKYKTRRAVMLKEMMEQNCAHSKKKLSRIILPDDSSEEENNV
NDKRESNIAVNPSTVKKNKQQDHCLNSVPSGSSAQSKVRSTPRVNPLAKQSKQTSLNLKD
TISEVSDFKPQNHNEVQSTTPPFTTVDSQKDCRKFPVPQKDGSALEDSSTSGASCSKSRP
HLAGTHTSLRLPQEGKGTCILVGGHEITSGLEVISSLRAIHGLQVEVCPLNGCDYIVSNR
MVVERRSQSEMLNSVNKNKFIEQIQHLQSMFERICVIVEKDREKTGDTSRMFRRTKSYDS
LLTTLIGAGIRILFSSCQEETADLLKELSLVEQRKNVGIHVPTVVNSNKSEALQFYLSIP
NISYITALNMCHQFSSVKRMANSSLQEISMYAQVTHQKAEEIYRYIHYVFDIQMLPNDLN
QDRLKSDI
Function
DNA-dependent ATPase component of the Fanconi anemia (FA) core complex. Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage. In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates. Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX. In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates. In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA.
Tissue Specificity
Expressed in germ cells of fetal and adult ovaries. In fetal ovaries, it is present in oogonia but expression is stronger in pachytene stage oocytes. Expressed in oocytes arrested at the diplotene stage of prophase I during the last trimester of pregnancy and in adults . Expressed in the testis .
KEGG Pathway
Fanconi anemia pathway (hsa03460 )
Reactome Pathway
PKR-mediated signaling (R-HSA-9833482 )
Fanconi Anemia Pathway (R-HSA-6783310 )

Molecular Interaction Atlas (MIA) of This DOT

28 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Male breast carcinoma DISUNQ2Q Definitive Genetic Variation [1]
Advanced cancer DISAT1Z9 Strong Genetic Variation [2]
Bloom syndrome DISKXQ7J Strong Biomarker [3]
Bone osteosarcoma DIST1004 Strong Genetic Variation [4]
Burkitt lymphoma DIS9D5XU Strong Genetic Variation [5]
Chronic fatigue syndrome DIS34WJ5 Strong Biomarker [6]
Colon cancer DISVC52G Strong Altered Expression [7]
Colon carcinoma DISJYKUO Strong Altered Expression [7]
Colorectal carcinoma DIS5PYL0 Strong Genetic Variation [8]
Epithelial ovarian cancer DIS56MH2 Strong Genetic Variation [9]
Hereditary breast carcinoma DISAEZT5 Strong Genetic Variation [10]
Male infertility DISY3YZZ Strong Genetic Variation [11]
Neoplasm DISZKGEW Strong Biomarker [12]
Osteosarcoma DISLQ7E2 Strong Genetic Variation [4]
Ovarian cancer DISZJHAP Strong Genetic Variation [9]
Ovarian neoplasm DISEAFTY Strong Genetic Variation [9]
Spermatogenic failure 28 DISHFI0N Strong Autosomal recessive [13]
Triple negative breast cancer DISAMG6N Strong Genetic Variation [14]
Acute monocytic leukemia DIS28NEL moderate Biomarker [15]
Acute myelogenous leukaemia DISCSPTN moderate Biomarker [15]
Azoospermia DIS94181 moderate Genetic Variation [16]
Female hypogonadism DISWASB4 moderate Genetic Variation [17]
Head and neck cancer DISBPSQZ moderate Biomarker [18]
Myelodysplastic syndrome DISYHNUI moderate Biomarker [15]
Pancytopenia DISVKEHV moderate Biomarker [15]
Fanconi's anemia DISGW6Q8 Supportive Autosomal recessive [19]
Obsolete male infertility with azoospermia or oligozoospermia due to single gene mutation DIS56JR8 Supportive Autosomal dominant [16]
Breast cancer DIS7DPX1 Disputed Autosomal dominant [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Fanconi anemia group M protein (FANCM). [20]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Fanconi anemia group M protein (FANCM). [21]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Fanconi anemia group M protein (FANCM). [22]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Fanconi anemia group M protein (FANCM). [23]
Cannabidiol DM0659E Approved Cannabidiol decreases the expression of Fanconi anemia group M protein (FANCM). [24]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Fanconi anemia group M protein (FANCM). [23]
Dasatinib DMJV2EK Approved Dasatinib decreases the expression of Fanconi anemia group M protein (FANCM). [25]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Fanconi anemia group M protein (FANCM). [26]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Fanconi anemia group M protein (FANCM). [27]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Fanconi anemia group M protein (FANCM). [28]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Fanconi anemia group M protein (FANCM). [30]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Fanconi anemia group M protein (FANCM). [31]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Fanconi anemia group M protein (FANCM). [32]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Fanconi anemia group M protein (FANCM). [33]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of Fanconi anemia group M protein (FANCM). [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Fanconi anemia group M protein (FANCM). [29]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Fanconi anemia group M protein (FANCM). [29]
------------------------------------------------------------------------------------

References

1 A possible role of FANCM mutations in male breast cancer susceptibility: Results from a multicenter study in Italy.Breast. 2018 Apr;38:92-97. doi: 10.1016/j.breast.2017.12.013. Epub 2018 Jan 4.
2 Biallelic truncating FANCM mutations cause early-onset cancer but not Fanconi anemia.Genet Med. 2018 Apr;20(4):458-463. doi: 10.1038/gim.2017.124. Epub 2017 Aug 24.
3 Defining the molecular interface that connects the Fanconi anemia protein FANCM to the Bloom syndrome dissolvasome.Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4437-42. doi: 10.1073/pnas.1117279109. Epub 2012 Mar 5.
4 A comprehensive candidate gene approach identifies genetic variation associated with osteosarcoma.BMC Cancer. 2011 May 29;11:209. doi: 10.1186/1471-2407-11-209.
5 A recurrent clonally distinct Burkitt lymphoma case highlights genetic key events contributing to oncogenesis.Genes Chromosomes Cancer. 2019 Aug;58(8):595-601. doi: 10.1002/gcc.22743. Epub 2019 Mar 27.
6 BLM prevents instability of structure-forming DNA sequences at common fragile sites.PLoS Genet. 2018 Nov 29;14(11):e1007816. doi: 10.1371/journal.pgen.1007816. eCollection 2018 Nov.
7 Molecular Portrait of Metastasis-Competent Circulating Tumor Cells in Colon Cancer Reveals the Crucial Role of Genes Regulating Energy Metabolism and DNA Repair.Clin Chem. 2017 Mar;63(3):700-713. doi: 10.1373/clinchem.2016.263582. Epub 2016 Dec 22.
8 Validation of Recently Proposed Colorectal Cancer Susceptibility Gene Variants in an Analysis of Families and Patients-a Systematic Review.Gastroenterology. 2017 Jan;152(1):75-77.e4. doi: 10.1053/j.gastro.2016.09.041. Epub 2016 Oct 3.
9 FANCM and RECQL genetic variants and breast cancer susceptibility: relevance to South Poland and West Ukraine.BMC Med Genet. 2018 Jan 19;19(1):12. doi: 10.1186/s12881-018-0524-x.
10 The identification of pathogenic variants in BRCA1/2 negative, high risk, hereditary breast and/or ovarian cancer patients: High frequency of FANCM pathogenic variants.Int J Cancer. 2019 Jun 1;144(11):2683-2694. doi: 10.1002/ijc.31992. Epub 2019 Jan 11.
11 Correction: A homozygous FANCM frameshift pathogenic variant causes male infertility.Genet Med. 2019 Jan;21(1):266. doi: 10.1038/s41436-018-0127-0.
12 A tumor suppressive DNA translocase named FANCM.Crit Rev Biochem Mol Biol. 2019 Feb;54(1):27-40. doi: 10.1080/10409238.2019.1568963. Epub 2019 Feb 4.
13 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
14 FANCM mutation c.5791C>T is a risk factor for triple-negative breast cancer in the Finnish population.Breast Cancer Res Treat. 2017 Nov;166(1):217-226. doi: 10.1007/s10549-017-4388-0. Epub 2017 Jul 12.
15 Germline Genetic Predisposition to Hematologic Malignancy.J Clin Oncol. 2017 Mar 20;35(9):1018-1028. doi: 10.1200/JCO.2016.70.8644. Epub 2017 Feb 13.
16 Bi-allelic Recessive Loss-of-Function Variants in FANCM Cause Non-obstructive Azoospermia. Am J Hum Genet. 2018 Aug 2;103(2):200-212. doi: 10.1016/j.ajhg.2018.07.005.
17 A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency.Elife. 2017 Dec 12;6:e30490. doi: 10.7554/eLife.30490.
18 The germline variants in DNA repair genes in pediatric medulloblastoma: a challenge for current therapeutic strategies.BMC Cancer. 2017 Apr 4;17(1):239. doi: 10.1186/s12885-017-3211-y.
19 Fanconi Anemia. 2002 Feb 14 [updated 2021 Jun 3]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
20 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
21 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
22 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
23 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
24 Cannabidiol-induced transcriptomic changes and cellular senescence in human Sertoli cells. Toxicol Sci. 2023 Feb 17;191(2):227-238. doi: 10.1093/toxsci/kfac131.
25 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
26 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
27 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
28 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
29 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
30 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
31 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
32 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
33 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
34 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.