General Information of Drug Off-Target (DOT) (ID: OTWVUA1B)

DOT Name Histone-lysine N-methyltransferase SETDB1 (SETDB1)
Synonyms EC 2.1.1.366; ERG-associated protein with SET domain; ESET; Histone H3-K9 methyltransferase 4; H3-K9-HMTase 4; Lysine N-methyltransferase 1E; SET domain bifurcated 1
Gene Name SETDB1
Related Disease
Adenoma ( )
Advanced cancer ( )
Autism ( )
Benign prostatic hyperplasia ( )
Breast neoplasm ( )
Carcinoma ( )
Cockayne syndrome type 2 ( )
Colorectal carcinoma ( )
Epithelial ovarian cancer ( )
Haematological malignancy ( )
Head and neck cancer ( )
Head and neck carcinoma ( )
Hepatitis B virus infection ( )
Hepatocellular carcinoma ( )
Huntington disease ( )
Influenza ( )
Lung cancer ( )
Lung carcinoma ( )
Malignant mesothelioma ( )
Malignant pleural mesothelioma ( )
Melanoma ( )
Neoplasm ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Prader-Willi syndrome ( )
Prostate neoplasm ( )
Schizophrenia ( )
Autism spectrum disorder ( )
Neurodevelopmental disorder ( )
Non-small-cell lung cancer ( )
Small-cell lung cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Colon adenocarcinoma ( )
Congenital contractural arachnodactyly ( )
Mesothelioma ( )
Nasopharyngeal carcinoma ( )
Prostate cancer ( )
Prostate carcinoma ( )
UniProt ID
SETB1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3DLM; 4X3S; 5KCH; 5KCO; 5KE2; 5KE3; 5KH6; 5QT1; 5QT2; 6AU2; 6AU3; 6BHD; 6BHE; 6BHG; 6BHH; 6BHI; 6BPI; 7C9N; 7CAJ; 7CD9; 7CJT; 8G5E; 8UWP
EC Number
2.1.1.366
Pfam ID
PF18300 ; PF01429 ; PF05033 ; PF00856 ; PF18358 ; PF18359
Sequence
MSSLPGCIGLDAATATVESEEIAELQQAVVEELGISMEELRHFIDEELEKMDCVQQRKKQ
LAELETWVIQKESEVAHVDQLFDDASRAVTNCESLVKDFYSKLGLQYRDSSSEDESSRPT
EIIEIPDEDDDVLSIDSGDAGSRTPKDQKLREAMAALRKSAQDVQKFMDAVNKKSSSQDL
HKGTLSQMSGELSKDGDLIVSMRILGKKRTKTWHKGTLIAIQTVGPGKKYKVKFDNKGKS
LLSGNHIAYDYHPPADKLYVGSRVVAKYKDGNQVWLYAGIVAETPNVKNKLRFLIFFDDG
YASYVTQSELYPICRPLKKTWEDIEDISCRDFIEEYVTAYPNRPMVLLKSGQLIKTEWEG
TWWKSRVEEVDGSLVRILFLDDKRCEWIYRGSTRLEPMFSMKTSSASALEKKQGQLRTRP
NMGAVRSKGPVVQYTQDLTGTGTQFKPVEPPQPTAPPAPPFPPAPPLSPQAGDSDLESQL
AQSRKQVAKKSTSFRPGSVGSGHSSPTSPALSENVSGGKPGINQTYRSPLGSTASAPAPS
ALPAPPAPPVFHGMLERAPAEPSYRAPMEKLFYLPHVCSYTCLSRVRPMRNEQYRGKNPL
LVPLLYDFRRMTARRRVNRKMGFHVIYKTPCGLCLRTMQEIERYLFETGCDFLFLEMFCL
DPYVLVDRKFQPYKPFYYILDITYGKEDVPLSCVNEIDTTPPPQVAYSKERIPGKGVFIN
TGPEFLVGCDCKDGCRDKSKCACHQLTIQATACTPGGQINPNSGYQYKRLEECLPTGVYE
CNKRCKCDPNMCTNRLVQHGLQVRLQLFKTQNKGWGIRCLDDIAKGSFVCIYAGKILTDD
FADKEGLEMGDEYFANLDHIESVENFKEGYESDAPCSSDSSGVDLKDQEDGNSGTEDPEE
SNDDSSDDNFCKDEDFSTSSVWRSYATRRQTRGQKENGLSETTSKDSHPPDLGPPHIPVP
PSIPVGGCNPPSSEETPKNKVASWLSCNSVSEGGFADSDSHSSFKTNEGGEGRAGGSRME
AEKASTSGLGIKDEGDIKQAKKEDTDDRNKMSVVTESSRNYGYNPSPVKPEGLRRPPSKT
SMHQSRRLMASAQSNPDDVLTLSSSTESEGESGTSRKPTAGQTSATAVDSDDIQTISSGS
EGDDFEDKKNMTGPMKRQVAVKSTRGFALKSTHGIAIKSTNMASVDKGESAPVRKNTRQF
YDGEESCYIIDAKLEGNLGRYLNHSCSPNLFVQNVFVDTHDLRFPWVAFFASKRIRAGTE
LTWDYNYEVGSVEGKELLCCCGAIECRGRLL
Function
Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation. Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1. SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells. Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway. Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing. The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions.
Tissue Specificity Widely expressed. High expression in testis.
KEGG Pathway
Lysine degradation (hsa00310 )
Metabolic pathways (hsa01100 )
Sig.ling pathways regulating pluripotency of stem cells (hsa04550 )
Reactome Pathway
PKMTs methylate histone lysines (R-HSA-3214841 )
BioCyc Pathway
MetaCyc:HS07042-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

39 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenoma DIS78ZEV Strong Altered Expression [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Autism DISV4V1Z Strong Genetic Variation [3]
Benign prostatic hyperplasia DISI3CW2 Strong Altered Expression [4]
Breast neoplasm DISNGJLM Strong Biomarker [5]
Carcinoma DISH9F1N Strong Biomarker [4]
Cockayne syndrome type 2 DIS3X0GQ Strong Biomarker [6]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [2]
Epithelial ovarian cancer DIS56MH2 Strong Altered Expression [7]
Haematological malignancy DISCDP7W Strong Biomarker [8]
Head and neck cancer DISBPSQZ Strong Biomarker [9]
Head and neck carcinoma DISOU1DS Strong Biomarker [9]
Hepatitis B virus infection DISLQ2XY Strong Altered Expression [10]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [11]
Huntington disease DISQPLA4 Strong Biomarker [12]
Influenza DIS3PNU3 Strong Altered Expression [13]
Lung cancer DISCM4YA Strong Biomarker [14]
Lung carcinoma DISTR26C Strong Biomarker [14]
Malignant mesothelioma DISTHJGH Strong Biomarker [15]
Malignant pleural mesothelioma DIST2R60 Strong Genetic Variation [16]
Melanoma DIS1RRCY Strong Biomarker [17]
Neoplasm DISZKGEW Strong Biomarker [18]
Ovarian cancer DISZJHAP Strong Altered Expression [7]
Ovarian neoplasm DISEAFTY Strong Altered Expression [7]
Prader-Willi syndrome DISYWMLU Strong Altered Expression [19]
Prostate neoplasm DISHDKGQ Strong Biomarker [20]
Schizophrenia DISSRV2N Strong Genetic Variation [21]
Autism spectrum disorder DISXK8NV moderate Biomarker [22]
Neurodevelopmental disorder DIS372XH moderate Genetic Variation [22]
Non-small-cell lung cancer DIS5Y6R9 moderate Altered Expression [18]
Small-cell lung cancer DISK3LZD moderate Biomarker [23]
Breast cancer DIS7DPX1 Limited Biomarker [24]
Breast carcinoma DIS2UE88 Limited Biomarker [24]
Colon adenocarcinoma DISDRE0J Limited Biomarker [25]
Congenital contractural arachnodactyly DISOM1K7 Limited Biomarker [26]
Mesothelioma DISKWK9M Limited Genetic Variation [16]
Nasopharyngeal carcinoma DISAOTQ0 Limited Altered Expression [27]
Prostate cancer DISF190Y Limited Biomarker [20]
Prostate carcinoma DISMJPLE Limited Biomarker [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 39 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Histone-lysine N-methyltransferase SETDB1 (SETDB1). [29]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Histone-lysine N-methyltransferase SETDB1 (SETDB1). [30]
Berberine DMC5Q8X Phase 4 Berberine increases the expression of Histone-lysine N-methyltransferase SETDB1 (SETDB1). [32]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Histone-lysine N-methyltransferase SETDB1 (SETDB1). [34]
GALLICACID DM6Y3A0 Investigative GALLICACID decreases the expression of Histone-lysine N-methyltransferase SETDB1 (SETDB1). [36]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved Arsenic trioxide affects the methylation of Histone-lysine N-methyltransferase SETDB1 (SETDB1). [31]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Histone-lysine N-methyltransferase SETDB1 (SETDB1). [33]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Histone-lysine N-methyltransferase SETDB1 (SETDB1). [35]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Histone-lysine N-methyltransferase SETDB1 (SETDB1). [35]
------------------------------------------------------------------------------------

References

1 Notch1 counteracts WNT/-catenin signaling through chromatin modification in colorectal cancer.J Clin Invest. 2012 Sep;122(9):3248-59. doi: 10.1172/JCI61216. Epub 2012 Aug 6.
2 Histone methyltransferase SETDB1 promotes colorectal cancer proliferation through the STAT1-CCND1/CDK6 axis.Carcinogenesis. 2020 Jul 10;41(5):678-688. doi: 10.1093/carcin/bgz131.
3 The expanding role of MBD genes in autism: identification of a MECP2 duplication and novel alterations in MBD5, MBD6, and SETDB1.Autism Res. 2012 Dec;5(6):385-97. doi: 10.1002/aur.1251. Epub 2012 Oct 10.
4 Histone methyltransferase SETDB1 is required for prostate cancer cell proliferation, migration and invasion.Asian J Androl. 2014 Mar-Apr;16(2):319-24. doi: 10.4103/1008-682X.122812.
5 Setdb1, a novel interactor of Np63, is involved in breast tumorigenesis.Oncotarget. 2016 May 17;7(20):28836-48. doi: 10.18632/oncotarget.7089.
6 Cockayne syndrome group B deficiency reduces H3K9me3 chromatin remodeler SETDB1 and exacerbates cellular aging.Nucleic Acids Res. 2019 Sep 19;47(16):8548-8562. doi: 10.1093/nar/gkz568.
7 Serum circSETDB1 is a promising biomarker for predicting response to platinum-taxane-combined chemotherapy and relapse in high-grade serous ovarian cancer.Onco Targets Ther. 2019 Sep 11;12:7451-7457. doi: 10.2147/OTT.S220700. eCollection 2019.
8 SETDB1 modulates the differentiation of both the crystal cells and the lamellocytes in Drosophila.Dev Biol. 2019 Dec 1;456(1):74-85. doi: 10.1016/j.ydbio.2019.08.008. Epub 2019 Aug 15.
9 Knockdown of SET Domain, Bifurcated 1 suppresses head and neck cancer cell viability and wound-healing ability in vitro.Turk J Biol. 2019 Oct 14;43(5):281-292. doi: 10.3906/biy-1903-71. eCollection 2019.
10 HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase.J Hepatol. 2015 Nov;63(5):1093-102. doi: 10.1016/j.jhep.2015.06.023. Epub 2015 Jul 2.
11 MicroRNA-621 Acts as a Tumor Radiosensitizer by Directly Targeting SETDB1 in Hepatocellular Carcinoma.Mol Ther. 2019 Feb 6;27(2):355-364. doi: 10.1016/j.ymthe.2018.11.005. Epub 2018 Nov 13.
12 Mechanism suppressing H3K9 trimethylation in pluripotent stem cells and its demise by polyQ-expanded huntingtin mutations.Hum Mol Genet. 2018 Dec 1;27(23):4117-4134. doi: 10.1093/hmg/ddy304.
13 Transcriptional derepression of the ERVWE1 locus following influenza A virus infection.J Virol. 2014 Apr;88(8):4328-37. doi: 10.1128/JVI.03628-13. Epub 2014 Jan 29.
14 H3K9 histone methyltransferase, KMT1E/SETDB1, cooperates with the SMAD2/3 pathway to suppress lung cancer metastasis.Cancer Res. 2014 Dec 15;74(24):7333-43. doi: 10.1158/0008-5472.CAN-13-3572. Epub 2014 Dec 4.
15 Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations.Nat Genet. 2016 Apr;48(4):407-16. doi: 10.1038/ng.3520. Epub 2016 Feb 29.
16 Whole exome and targeted deep sequencing identify genome-wide allelic loss and frequent SETDB1 mutations in malignant pleural mesotheliomas.Oncotarget. 2016 Feb 16;7(7):8321-31. doi: 10.18632/oncotarget.7032.
17 Emerging roles of H3K9me3, SETDB1 and SETDB2 in therapy-induced cellular reprogramming.Clin Epigenetics. 2019 Mar 8;11(1):43. doi: 10.1186/s13148-019-0644-y.
18 SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis.Nat Cell Biol. 2019 Feb;21(2):214-225. doi: 10.1038/s41556-018-0266-1. Epub 2019 Jan 28.
19 Epigenetic therapy of Prader-Willi syndrome.Transl Res. 2019 Jun;208:105-118. doi: 10.1016/j.trsl.2019.02.012. Epub 2019 Mar 5.
20 The long tail of oncogenic drivers in prostate cancer.Nat Genet. 2018 May;50(5):645-651. doi: 10.1038/s41588-018-0078-z. Epub 2018 Apr 2.
21 The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain.Nat Genet. 2017 Aug;49(8):1239-1250. doi: 10.1038/ng.3906. Epub 2017 Jul 3.
22 Chromosomal microarray analysis in clinical evaluation of neurodevelopmental disorders-reporting a novel deletion of SETDB1 and illustration of counseling challenge.Pediatr Res. 2016 Sep;80(3):371-81. doi: 10.1038/pr.2016.101. Epub 2016 Apr 27.
23 Identification and characterization of the first fragment hits for SETDB1 Tudor domain.Bioorg Med Chem. 2019 Sep 1;27(17):3866-3878. doi: 10.1016/j.bmc.2019.07.020. Epub 2019 Jul 12.
24 SETDB1 induces epithelialmesenchymal transition in breast carcinoma by directly binding with Snail promoter.Oncol Rep. 2019 Feb;41(2):1284-1292. doi: 10.3892/or.2018.6871. Epub 2018 Nov 19.
25 Significance of histone methyltransferase SETDB1 expression in colon adenocarcinoma.APMIS. 2017 Nov;125(11):985-995. doi: 10.1111/apm.12745. Epub 2017 Sep 15.
26 LncRNA FENDRR represses proliferation, migration and invasion through suppression of survivin in cholangiocarcinoma cells.Cell Cycle. 2019 Apr;18(8):889-897. doi: 10.1080/15384101.2019.1598726. Epub 2019 Apr 14.
27 Enhanced expression of SETDB1 possesses prognostic value and promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma.Oncol Rep. 2018 Aug;40(2):1017-1025. doi: 10.3892/or.2018.6490. Epub 2018 Jun 14.
28 Quantitative proteomic study of human prostate cancer cells with different metastatic potentials.Int J Oncol. 2016 Apr;48(4):1437-46. doi: 10.3892/ijo.2016.3378. Epub 2016 Feb 4.
29 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
30 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
31 Analysis of the transcriptional regulation of cancer-related genes by aberrant DNA methylation of the cis-regulation sites in the promoter region during hepatocyte carcinogenesis caused by arsenic. Oncotarget. 2015 Aug 28;6(25):21493-506. doi: 10.18632/oncotarget.4085.
32 Berberine acts as a putative epigenetic modulator by affecting the histone code. Toxicol In Vitro. 2016 Oct;36:10-17. doi: 10.1016/j.tiv.2016.06.004. Epub 2016 Jun 13.
33 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
34 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
35 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
36 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.