General Information of Disease (ID: DISOM1K7)

Disease Name Congenital contractural arachnodactyly
Synonyms
arthrogryposis, distal, type 9; DA9; contractures, multiple with arachnodactyly; arachnodactyly, contractural Beals type; Ear anomalies-contractures-dysplasia of bone with kyphoscoliosis; contractural arachnodactyly, congenital; distal arthrogryposis type 9; CCA syndrome; CCA; Beals-Hecht syndrome; Beals syndrome
Definition
Congenital contractural arachnodactyly (CCA, Beals syndrome) is a connective tissue disorder characterized by multiple flexion contractures, arachnodactyly, severe kyphoscoliosis, abnormal pinnae and muscular hypoplasia.
Disease Hierarchy
DIS2BIP8: Congenital nervous system disorder
DIS3QIEL: Distal arthrogryposis
DISC81CM: Arthrogryposis
DISME1TG: Marfan and Marfan-related disorder
DISOM1K7: Congenital contractural arachnodactyly
Disease Identifiers
MONDO ID
MONDO_0007363
MESH ID
C536211
UMLS CUI
C0220668
OMIM ID
121050
MedGen ID
67391
Orphanet ID
115
SNOMED CT ID
205821003

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 42 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
AGXT TTF5NVW Limited Posttranslational Modification [1]
ANXA10 TT0NL6U Limited Biomarker [2]
E2F2 TT5FYX0 Limited Altered Expression [3]
FGF10 TTNPEFX Limited Altered Expression [4]
PBRM1 TTH8ZRL Limited Genetic Variation [5]
PDX1 TT8SGZK Limited Altered Expression [6]
PLA2G7 TTDNFMT Limited Altered Expression [7]
PRKAR2B TTW4Y2M Limited Altered Expression [8]
RARG TT1Q3IE Limited Biomarker [9]
SLC15A1 TT5LF3C Limited Altered Expression [10]
SLC7A11 TTBZMIO Limited Biomarker [11]
CEACAM3 TTPX7I5 moderate Biomarker [12]
PSMD10 TT2H4LN moderate Biomarker [13]
S1PR2 TTVSMOH moderate Altered Expression [14]
APLNR TTJ8E43 Strong Altered Expression [15]
ASPH TT2KHP7 Strong Altered Expression [16]
CA14 TTEYTKG Strong Altered Expression [17]
CCK TT90CMU Strong Biomarker [18]
CEACAM5 TTY6DTE Strong Biomarker [19]
COL6A3 TT5WCAH Strong Biomarker [20]
DNAJB1 TTPXAWS Strong Altered Expression [21]
EED TTFNJ4R Strong Biomarker [22]
GADD45B TTMDW9L Strong Biomarker [23]
HDAC3 TT4YWTO Strong Altered Expression [24]
HTATIP2 TTC6IX5 Strong Posttranslational Modification [25]
LASP1 TTZJA87 Strong Biomarker [26]
METAP2 TTZL0OI Strong Altered Expression [27]
NR1H4 TTS4UGC Strong Altered Expression [28]
PAK4 TT7Y3BZ Strong Altered Expression [29]
PDF TT9SL3Q Strong Biomarker [30]
PDGFA TTSM78N Strong Biomarker [31]
PDGFD TTSN0GA Strong Biomarker [32]
PDK3 TTDEQIP Strong Biomarker [33]
PPIA TTL2ADK Strong Biomarker [34]
PPP3CA TTA4LDE Strong Altered Expression [35]
PTK2B TTTEFBV Strong Altered Expression [36]
RAB7A TTF6WAQ Strong Biomarker [37]
RECK TTRZBW7 Strong Altered Expression [38]
SLC29A1 TTLXAKE Strong Biomarker [25]
SLC7A5 TTPH2JB Strong Altered Expression [39]
TACC3 TTQ4UFD Strong Biomarker [40]
TRIM59 TT613U4 Strong Biomarker [41]
------------------------------------------------------------------------------------
⏷ Show the Full List of 42 DTT(s)
This Disease Is Related to 1 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC4A1 DTB0Q3P Strong Biomarker [42]
------------------------------------------------------------------------------------
This Disease Is Related to 2 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
NAT10 DEZV4AP Limited Biomarker [12]
CES2 DETHCPD Strong Biomarker [43]
------------------------------------------------------------------------------------
This Disease Is Related to 89 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
AGFG1 OTI8ZKC4 Limited Biomarker [44]
ATRNL1 OTY5JUX2 Limited Biomarker [12]
CDHR2 OTTHEUPO Limited Biomarker [45]
CILK1 OTWOYEYP Limited Genetic Variation [46]
CRYBB2 OTL0Z8E6 Limited Biomarker [47]
DCAF1 OT3ZDVOE Limited Biomarker [44]
DNAJB5 OT7WDJ5C Limited Altered Expression [48]
EFNA1 OTU2NUA2 Limited Biomarker [49]
EMP1 OTSZHUHQ Limited Altered Expression [50]
ESD OTUSIBPS Limited Biomarker [51]
FBP1 OTQBANEP Limited Altered Expression [52]
FILIP1L OTPY8IMS Limited Altered Expression [50]
GP2 OTB6TMGY Limited Biomarker [53]
GTF2H4 OTPD1DIU Limited Biomarker [54]
HGD OTTKLQOO Limited Altered Expression [55]
IL34 OTZ15VVK Limited Biomarker [56]
MAML1 OTQA4DDN Limited Biomarker [57]
MFAP5 OT46VXSG Limited Biomarker [58]
OSCP1 OTZ4IFGJ Limited Biomarker [59]
PDLIM3 OTVXQC81 Limited Biomarker [12]
RPAIN OTBMXAYK Limited Biomarker [44]
SALL3 OTJ2LZKQ Limited Biomarker [60]
SETDB1 OTWVUA1B Limited Biomarker [44]
TNFRSF10C OTVHOL9B Limited Posttranslational Modification [61]
CEACAM7 OTKFDTZY moderate Biomarker [12]
FBN1 OTYCJT63 moderate Genetic Variation [62]
GDE1 OTU6FSBF moderate Altered Expression [63]
KLHL1 OTAX6SAD moderate Altered Expression [64]
PPFIBP2 OTXQO55Y moderate Biomarker [65]
PSG2 OT2EIXAI moderate Biomarker [12]
SELENOK OTKM7N7P moderate Altered Expression [66]
SYCE1L OTXU44F3 moderate Altered Expression [64]
TNNI2 OTGGZFSC moderate Biomarker [67]
ACTBL2 OTD6B81U Strong Genetic Variation [68]
AFAP1 OTR473H8 Strong Biomarker [69]
AKIRIN2 OTQ6WSKW Strong Biomarker [70]
ALDH1A3 OT1C9NKQ Strong Biomarker [25]
BCL9 OTRBIPR4 Strong Biomarker [71]
CBX5 OT8VYY84 Strong Biomarker [72]
CCDC25 OTNC58MD Strong Biomarker [73]
CLTC OTBFASMA Strong Biomarker [42]
CSNK2B OT2WW7R1 Strong Biomarker [74]
CUL4B OT2QX4DO Strong Altered Expression [75]
DPY30 OTLHCJ6C Strong Altered Expression [76]
EBF1 OTZ61YYH Strong Biomarker [77]
ECM1 OT1K65VW Strong Altered Expression [78]
ELAVL2 OT6EJ8MQ Strong Biomarker [1]
ERO1A OTVKOQWM Strong Biomarker [79]
ETV4 OT8C98UZ Strong Altered Expression [80]
GATA5 OTO81B63 Strong Biomarker [81]
GATA6 OTO2BC0F Strong Biomarker [82]
HHEX OTLIUVYX Strong Biomarker [83]
HIF3A OTPWAAMC Strong Biomarker [84]
HOXD9 OTZ4GVR1 Strong Biomarker [85]
HSDL2 OT4IN0MV Strong Altered Expression [86]
KLHL21 OT28Y2LQ Strong Biomarker [87]
MACC1 OTV3DLX0 Strong Altered Expression [88]
MCM3AP OT895FEC Strong Altered Expression [89]
MORC2 OT52A8BJ Strong Biomarker [90]
NEIL1 OTHBU5DJ Strong Genetic Variation [91]
NUDT1 OTZSES3W Strong Biomarker [91]
ONECUT1 OTK1QUQT Strong Biomarker [92]
OPCML OT93PQ6Y Strong Biomarker [85]
ORM2 OTRJGZP8 Strong Biomarker [93]
OSBP2 OTDGLB4J Strong Biomarker [94]
OSBPL7 OTUU2X2Q Strong Biomarker [94]
OSBPL8 OTD50E5Y Strong Biomarker [94]
PAK3 OT80M3BV Strong Genetic Variation [95]
PI15 OTPJL6ML Strong Biomarker [96]
PKD2 OTIXBU8H Strong Biomarker [19]
PLK3 OT19CT2Z Strong Altered Expression [97]
POTEM OT7L2HGH Strong Genetic Variation [68]
PRIMA1 OT9ITT3P Strong Biomarker [98]
PRLH OTJBP360 Strong Biomarker [83]
QRSL1 OTJDU2UG Strong Altered Expression [82]
RAB7B OT60A0E9 Strong Biomarker [37]
S100A2 OTTGHJ1H Strong Biomarker [99]
SCP2 OTPAFCPQ Strong Biomarker [100]
SEPTIN4 OTD16B30 Strong Biomarker [101]
SERPINB2 OT72QLZB Strong Biomarker [102]
SETD1A OTVVWRIC Strong Biomarker [76]
SIRT7 OT5M4OT4 Strong Altered Expression [103]
SRRT OTMYPSWV Strong Biomarker [104]
TFF2 OTRXB19X Strong Biomarker [105]
TMSB10 OTLVZ13T Strong Biomarker [106]
TP53I3 OTSCM68G Strong Biomarker [25]
TPD52 OTPKSK43 Strong Altered Expression [21]
TSPAN1 OTZQPIYK Strong Altered Expression [107]
FBN2 OT3KYJQL Definitive Autosomal dominant [108]
------------------------------------------------------------------------------------
⏷ Show the Full List of 89 DOT(s)

References

1 Five Hub Genes Can Be The Potential DNA Methylation Biomarkers For Cholangiocarcinoma Using Bioinformatics Analysis.Onco Targets Ther. 2019 Oct 11;12:8355-8365. doi: 10.2147/OTT.S203342. eCollection 2019.
2 Annexin10 promotes extrahepatic cholangiocarcinoma metastasis by facilitating EMT via PLA2G4A/PGE2/STAT3 pathway.EBioMedicine. 2019 Sep;47:142-155. doi: 10.1016/j.ebiom.2019.08.062. Epub 2019 Sep 3.
3 miR-365 Suppresses Cholangiocarcinoma Cell Proliferation and Induces Apoptosis by Targeting E2F2.Oncol Res. 2018 Oct 17;26(9):1375-1382. doi: 10.3727/096504018X15188352857437. Epub 2018 Feb 22.
4 Expression of keratinocyte growth factor and its receptor in clear cell acanthoma.Exp Dermatol. 2006 Oct;15(10):762-8. doi: 10.1111/j.1600-0625.2006.00459.x.
5 Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications.PLoS One. 2014 Dec 23;9(12):e115383. doi: 10.1371/journal.pone.0115383. eCollection 2014.
6 Hilar cholangiocarcinoma is pathologically similar to pancreatic duct adenocarcinoma: suggestions of similar background and development.J Hepatobiliary Pancreat Sci. 2014 Jul;21(7):441-7. doi: 10.1002/jhbp.70. Epub 2014 Jan 21.
7 MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b.BMC Cancer. 2014 Dec 5;14:917. doi: 10.1186/1471-2407-14-917.
8 PRKAR1A is overexpressed and represents a possible therapeutic target in human cholangiocarcinoma.Int J Cancer. 2011 Jul 1;129(1):34-44. doi: 10.1002/ijc.25646. Epub 2010 Nov 3.
9 Oncogenic activity of retinoic acid receptor is exhibited through activation of the Akt/NF-B and Wnt/-catenin pathways in cholangiocarcinoma.Mol Cell Biol. 2013 Sep;33(17):3416-25. doi: 10.1128/MCB.00384-13. Epub 2013 Jun 24.
10 Aminolevulinic acid derivatives-based photodynamic therapy in human intra- and extrahepatic cholangiocarcinoma cells.Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):503-10. doi: 10.1016/j.ejpb.2013.01.022. Epub 2013 Feb 18.
11 CD44 variant-dependent redox status regulation in liver fluke-associated cholangiocarcinoma: A target for cholangiocarcinoma treatment.Cancer Sci. 2016 Jul;107(7):991-1000. doi: 10.1111/cas.12967. Epub 2016 Jun 20.
12 Surveillance of primary sclerosing cholangitis with ERC and brush cytology: risk factors for cholangiocarcinoma.Scand J Gastroenterol. 2017 Feb;52(2):242-249. doi: 10.1080/00365521.2016.1250281. Epub 2016 Nov 3.
13 Involvement of PSMD10, CDK4, and Tumor Suppressors in Development of Intrahepatic Cholangiocarcinoma of Syrian Golden Hamsters Induced by Clonorchis sinensis and N-Nitrosodimethylamine.PLoS Negl Trop Dis. 2015 Aug 27;9(8):e0004008. doi: 10.1371/journal.pntd.0004008. eCollection 2015.
14 Taurocholate induces cyclooxygenase-2 expression via the sphingosine 1-phosphate receptor 2 in a human cholangiocarcinoma cell line. J Biol Chem. 2015 Dec 25;290(52):30988-1002.
15 Inhibition of the apelin/apelin receptor axis decreases cholangiocarcinoma growth.Cancer Lett. 2017 Feb 1;386:179-188. doi: 10.1016/j.canlet.2016.11.025. Epub 2016 Nov 26.
16 Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer Lett. 2018 Aug 10;429:1-10.
17 Increased TLR4 and TREM-1 expression on monocytes and neutrophils in preterm birth: further evidence of a proinflammatory state.J Matern Fetal Neonatal Med. 2019 Sep;32(18):2961-2969. doi: 10.1080/14767058.2018.1452903. Epub 2018 Mar 25.
18 Long non-coding RNA MIR22HG inhibits cell proliferation and migration in cholangiocarcinoma by negatively regulating the Wnt/-catenin signaling pathway.J Gene Med. 2019 May;21(5):e3085. doi: 10.1002/jgm.3085. Epub 2019 Apr 15.
19 lnc-PKD2-2-3, identified by long non-coding RNA expression profiling, is associated with pejorative tumor features and poor prognosis, enhances cancer stemness and may serve as cancer stem-cell marker in cholangiocarcinoma.Int J Oncol. 2019 Jul;55(1):45-58. doi: 10.3892/ijo.2019.4798. Epub 2019 May 6.
20 E2F1-induced upregulation of long non-coding RNA LMCD1-AS1 facilitates cholangiocarcinoma cell progression by regulating miR-345-5p/COL6A3 pathway.Biochem Biophys Res Commun. 2019 Apr 30;512(2):150-155. doi: 10.1016/j.bbrc.2019.03.054. Epub 2019 Mar 13.
21 Identification of TPD52 and DNAJB1 as two novel bile biomarkers for cholangiocarcinoma by iTRAQbased quantitative proteomics analysis.Oncol Rep. 2019 Dec;42(6):2622-2634. doi: 10.3892/or.2019.7387. Epub 2019 Oct 23.
22 Overexpression of polycomb repressive complex 2 key components EZH2/SUZ12/EED as an unfavorable prognostic marker in cholangiocarcinoma.Pathol Res Pract. 2019 Jul;215(7):152451. doi: 10.1016/j.prp.2019.152451. Epub 2019 May 13.
23 Gadd45 silencing impaired viability and metastatic phenotypes in cholangiocarcinoma cells by modulating the EMT pathway.Oncol Lett. 2018 Mar;15(3):3031-3041. doi: 10.3892/ol.2017.7706. Epub 2017 Dec 28.
24 Low levels of pyruvate induced by a positive feedback loop protects cholangiocarcinoma cells from apoptosis.Cell Commun Signal. 2019 Mar 12;17(1):23. doi: 10.1186/s12964-019-0332-8.
25 Aberrant methylation of HTATIP2 and UCHL1 as a predictive biomarker for cholangiocarcinoma.Mol Med Rep. 2018 Mar;17(3):4145-4153. doi: 10.3892/mmr.2017.8319. Epub 2017 Dec 19.
26 Upregulated LASP-1 correlates with a malignant phenotype and its potential therapeutic role in human cholangiocarcinoma.Tumour Biol. 2016 Jun;37(6):8305-15. doi: 10.1007/s13277-015-4704-4. Epub 2016 Jan 4.
27 Blocking of methionine aminopeptidase-2 by TNP-470 induces apoptosis and increases chemosensitivity of cholangiocarcinoma.J Cancer Res Ther. 2019 Jan-Mar;15(1):148-152. doi: 10.4103/jcrt.JCRT_250_17.
28 The FXR agonist obeticholic acid inhibits the cancerogenic potential of human cholangiocarcinoma.PLoS One. 2019 Jan 24;14(1):e0210077. doi: 10.1371/journal.pone.0210077. eCollection 2019.
29 Overexpressed PAK4 promotes proliferation, migration and invasion of choriocarcinoma.Carcinogenesis. 2011 May;32(5):765-71. doi: 10.1093/carcin/bgr033. Epub 2011 Feb 16.
30 Discovery of Serotransferrin Glycoforms: Novel Markers for Diagnosis of Liver Periductal Fibrosis and Prediction of Cholangiocarcinoma.Biomolecules. 2019 Sep 27;9(10):538. doi: 10.3390/biom9100538.
31 Overexpression of PDGFA and its receptor during carcinogenesis of Opisthorchis viverrini-associated cholangiocarcinoma.Parasitol Int. 2012 Mar;61(1):145-50. doi: 10.1016/j.parint.2011.07.008. Epub 2011 Jul 14.
32 Intrahepatic Cholangiocarcinoma: Continuing Challenges and Translational Advances.Hepatology. 2019 Apr;69(4):1803-1815. doi: 10.1002/hep.30289. Epub 2019 Mar 25.
33 Serum pyruvate dehydrogenase kinase as a prognostic marker for cholangiocarcinoma.Oncol Lett. 2019 Jun;17(6):5275-5282. doi: 10.3892/ol.2019.10185. Epub 2019 Mar 22.
34 Secreted cyclophilin A mediates G1/S phase transition of cholangiocarcinoma cells via CD147/ERK1/2 pathway.Tumour Biol. 2015 Feb;36(2):849-59. doi: 10.1007/s13277-014-2691-5. Epub 2014 Oct 10.
35 Quantitative Proteomic Analysis and Evaluation of the Potential Prognostic Biomarkers in Cholangiocarcinoma.J Cancer. 2019 Jul 5;10(17):3985-3999. doi: 10.7150/jca.29354. eCollection 2019.
36 Suppression of 14-3-3 in cholangiocarcinoma cells inhibits proliferation through attenuated Akt activity, enhancing chemosensitivity to gemcitabine.Oncol Lett. 2018 Jan;15(1):347-353. doi: 10.3892/ol.2017.7326. Epub 2017 Nov 1.
37 Disruption of endocytic trafficking protein Rab7 impairs invasiveness of cholangiocarcinoma cells.Cancer Biomark. 2017 Sep 7;20(3):255-266. doi: 10.3233/CBM-170030.
38 Expression profiles of oncomir miR-21 and tumor suppressor let-7a in the progression of opisthorchiasis-associated cholangiocarcinoma.Asian Pac J Cancer Prev. 2012;13 Suppl:65-9.
39 Increase in L-type amino acid transporter 1 expression during cholangiocarcinogenesis caused by liver fluke infection and its prognostic significance.Parasitol Int. 2017 Aug;66(4):471-478. doi: 10.1016/j.parint.2015.11.011. Epub 2015 Nov 30.
40 TACC3 overexpression in cholangiocarcinoma correlates with poor prognosis and is a potential anti-cancer molecular drug target for HDAC inhibitors.Oncotarget. 2016 Nov 15;7(46):75441-75456. doi: 10.18632/oncotarget.12254.
41 Knockdown of tripartite motif 59 (TRIM59) inhibits proliferation in cholangiocarcinoma via the PI3K/AKT/mTOR signalling pathway.Gene. 2019 May 25;698:50-60. doi: 10.1016/j.gene.2019.02.044. Epub 2019 Feb 27.
42 Liver transplantation and combined hepatocellular-cholangiocarcinoma: Feasibility and outcomes.Dig Liver Dis. 2017 May;49(5):467-470. doi: 10.1016/j.dld.2017.01.166. Epub 2017 Feb 6.
43 Prognostic Impact of Carboxylesterase 2 in Cholangiocarcinoma.Sci Rep. 2019 Mar 13;9(1):4338. doi: 10.1038/s41598-019-40487-9.
44 LncRNA FENDRR represses proliferation, migration and invasion through suppression of survivin in cholangiocarcinoma cells.Cell Cycle. 2019 Apr;18(8):889-897. doi: 10.1080/15384101.2019.1598726. Epub 2019 Apr 14.
45 Discovery and Qualification of Serum Protein Biomarker Candidates for Cholangiocarcinoma Diagnosis.J Proteome Res. 2019 Sep 6;18(9):3305-3316. doi: 10.1021/acs.jproteome.9b00242. Epub 2019 Jul 31.
46 Suitability of commercially available POC-CCA tests for schistosomiasis: Considerations for efficiency, reproducibility and decision making criteria for field application in areas of low endemicity.J Immunol Methods. 2019 Sep;472:1-6. doi: 10.1016/j.jim.2019.06.006. Epub 2019 Jun 10.
47 JQ1 Induces DNA Damage and Apoptosis, and Inhibits Tumor Growth in a Patient-Derived Xenograft Model of Cholangiocarcinoma.Mol Cancer Ther. 2018 Jan;17(1):107-118. doi: 10.1158/1535-7163.MCT-16-0922. Epub 2017 Nov 15.
48 MIR21 Drives Resistance to Heat Shock Protein 90 Inhibition in Cholangiocarcinoma.Gastroenterology. 2018 Mar;154(4):1066-1079.e5. doi: 10.1053/j.gastro.2017.10.043. Epub 2017 Nov 4.
49 Upregulation of endothelial nitric oxide synthase (eNOS) and its upstream regulators in Opisthorchis viverrini associated cholangiocarcinoma and its clinical significance.Parasitol Int. 2017 Aug;66(4):486-493. doi: 10.1016/j.parint.2016.04.008. Epub 2016 Apr 30.
50 Suppression of trophoblast cell surface antigen 2 enhances proliferation and migration in liver fluke-associated cholangiocarcinoma.Ann Hepatol. 2016 Jan-Feb;15(1):71-81. doi: 10.5604/16652681.1184223.
51 Evaluation of anticancer potential of Thai medicinal herb extracts against cholangiocarcinoma cell lines.PLoS One. 2019 May 23;14(5):e0216721. doi: 10.1371/journal.pone.0216721. eCollection 2019.
52 Forced overexpression of FBP1 inhibits proliferation and metastasis in cholangiocarcinoma cells via Wnt/-catenin pathway.Life Sci. 2018 Oct 1;210:224-234. doi: 10.1016/j.lfs.2018.09.009. Epub 2018 Sep 4.
53 Cholangiocarcinoma in Patients with Primary Sclerosing Cholangitis (PSC): a Comprehensive Review.Clin Rev Allergy Immunol. 2020 Feb;58(1):134-149. doi: 10.1007/s12016-019-08764-7.
54 Aberrant expression of NF-B in liver fluke associated cholangiocarcinoma: implications for targeted therapy.PLoS One. 2014 Aug 29;9(8):e106056. doi: 10.1371/journal.pone.0106056. eCollection 2014.
55 Altered Expression of Oxidative Metabolism Related Genes in Cholangiocarcinomas.Asian Pac J Cancer Prev. 2015;16(14):5875-81. doi: 10.7314/apjcp.2015.16.14.5875.
56 Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages.J Hepatol. 2017 Jan;66(1):102-115. doi: 10.1016/j.jhep.2016.08.012. Epub 2016 Sep 1.
57 Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo.Int J Oncol. 2016 May;48(5):1868-76. doi: 10.3892/ijo.2016.3413. Epub 2016 Mar 2.
58 Angiotensin receptor blockade attenuates cholangiocarcinoma cell growth by inhibiting the oncogenic activity of Yes-associated protein.Cancer Lett. 2018 Oct 10;434:120-129. doi: 10.1016/j.canlet.2018.07.021. Epub 2018 Jul 19.
59 Overexpression of oxidored-nitro domain containing protein 1 inhibits human nasopharyngeal carcinoma and cervical cancer cell proliferation and induces apoptosis: Involvement of mitochondrial apoptotic pathways.Oncol Rep. 2013 Jan;29(1):79-86. doi: 10.3892/or.2012.2101. Epub 2012 Oct 23.
60 Investigation of miRNA- and lncRNA-mediated competing endogenous RNA network in cholangiocarcinoma.Oncol Lett. 2019 Nov;18(5):5283-5293. doi: 10.3892/ol.2019.10852. Epub 2019 Sep 12.
61 CpG-island methylation study of liver fluke-related cholangiocarcinoma.Br J Cancer. 2011 Apr 12;104(8):1313-8. doi: 10.1038/bjc.2011.102. Epub 2011 Mar 29.
62 Structure and function of the mammalian fibrillin gene family: implications for human connective tissue diseases.Mol Genet Metab. 2012 Dec;107(4):635-47. doi: 10.1016/j.ymgme.2012.07.023. Epub 2012 Aug 3.
63 Unravelling the Diagnostic Dilemma: A MicroRNA Panel of Circulating MiR-16 and MiR-877 as A Diagnostic Classifier for Distal Bile Duct Tumors.Cancers (Basel). 2019 Aug 15;11(8):1181. doi: 10.3390/cancers11081181.
64 Drug sensitivity and drug resistance profiles of human intrahepatic cholangiocarcinoma cell lines. World J Gastroenterol. 2005 May 14;11(18):2748-53. doi: 10.3748/wjg.v11.i18.2748.
65 lncRNA FLVCR1-AS1 regulates cell proliferation, migration and invasion by sponging miR-485-5p in human cholangiocarcinoma.Oncol Lett. 2019 Sep;18(3):2240-2247. doi: 10.3892/ol.2019.10577. Epub 2019 Jul 5.
66 Selenoprotein K Mediates the Proliferation, Migration, and Invasion of Human Choriocarcinoma Cells by Negatively Regulating Human Chorionic Gonadotropin Expression via ERK, p38 MAPK, and Akt Signaling Pathway.Biol Trace Elem Res. 2018 Jul;184(1):47-59. doi: 10.1007/s12011-017-1155-3. Epub 2017 Oct 6.
67 A gain-of-function mutation in Tnni2 impeded bone development through increasing Hif3a expression in DA2B mice.PLoS Genet. 2014 Oct 23;10(10):e1004589. doi: 10.1371/journal.pgen.1004589. eCollection 2014 Oct.
68 A novel nonstop mutation in the stop codon and a novel missense mutation in the type II 3beta-hydroxysteroid dehydrogenase (3beta-HSD) gene causing, respectively, nonclassic and classic 3beta-HSD deficiency congenital adrenal hyperplasia.J Clin Endocrinol Metab. 2002 Jun;87(6):2556-63. doi: 10.1210/jcem.87.6.8559.
69 LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells.Oncotarget. 2017 Apr 6;8(35):58394-58404. doi: 10.18632/oncotarget.16880. eCollection 2017 Aug 29.
70 Akirin2 is modulated by miR-490-3p and facilitates angiogenesis in cholangiocarcinoma through the IL-6/STAT3/VEGFA signaling pathway.Cell Death Dis. 2019 Mar 18;10(4):262. doi: 10.1038/s41419-019-1506-4.
71 Long non-coding RNA NNT-AS1 functions as an oncogenic gene through modulating miR-485/BCL9 in cholangiocarcinoma.Cancer Manag Res. 2019 Aug 15;11:7739-7749. doi: 10.2147/CMAR.S207801. eCollection 2019.
72 Dicer promotes tumorigenesis by translocating to nucleus to promote SFRP1 promoter methylation in cholangiocarcinoma cells.Cell Death Dis. 2017 Feb 23;8(2):e2628. doi: 10.1038/cddis.2017.57.
73 High expression of CCDC25 in cholangiocarcinoma tissue samples.Oncol Lett. 2017 Aug;14(2):2566-2572. doi: 10.3892/ol.2017.6446. Epub 2017 Jun 21.
74 Overexpressions of CK2 and XIAP are associated with poor prognosis of patients with cholangiocarcinoma.Pathol Oncol Res. 2014 Jan;20(1):73-9. doi: 10.1007/s12253-013-9660-y. Epub 2013 Jul 5.
75 Cul4B is a novel prognostic marker in cholangiocarcinoma.Oncol Lett. 2017 Aug;14(2):1265-1274. doi: 10.3892/ol.2017.6297. Epub 2017 Jun 1.
76 Upregulation of DPY30 promotes cell proliferation and predicts a poor prognosis in cholangiocarcinoma.Biomed Pharmacother. 2020 Mar;123:109766. doi: 10.1016/j.biopha.2019.109766. Epub 2019 Dec 14.
77 Prolonged oxidative stress down-regulates Early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis.Redox Biol. 2018 Apr;14:637-644. doi: 10.1016/j.redox.2017.11.011. Epub 2017 Nov 13.
78 Overexpression of ECM1 contributes to migration and invasion in cholangiocarcinoma cell.Neoplasma. 2012;59(4):409-15. doi: 10.4149/neo_2012_053.
79 Expression of endoplasmic reticulum oxidoreductase 1- in cholangiocarcinoma tissues and its effects on the proliferation and migration of cholangiocarcinoma cells.Cancer Manag Res. 2019 Jul 19;11:6727-6739. doi: 10.2147/CMAR.S188746. eCollection 2019.
80 Increased ETV4 expression correlates with estrogen-enhanced proliferation and invasiveness of cholangiocarcinoma cells.Cancer Cell Int. 2018 Feb 20;18:25. doi: 10.1186/s12935-018-0525-z. eCollection 2018.
81 Methylation-Mediated Silencing of GATA5 Gene Suppresses Cholangiocarcinoma Cell Proliferation and Metastasis.Transl Oncol. 2018 Jun;11(3):585-592. doi: 10.1016/j.tranon.2018.01.023. Epub 2018 Mar 13.
82 The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma.Int J Oncol. 2019 Sep;55(3):657-670. doi: 10.3892/ijo.2019.4837. Epub 2019 Jul 15.
83 A Runaway PRH/HHEX-Notch3-Positive Feedback Loop Drives Cholangiocarcinoma and Determines Response to CDK4/6 Inhibition.Cancer Res. 2020 Feb 15;80(4):757-770. doi: 10.1158/0008-5472.CAN-19-0942. Epub 2019 Dec 16.
84 Potential role of HIF-1-responsive microRNA210/HIF3 axis on gemcitabine resistance in cholangiocarcinoma cells.PLoS One. 2018 Jun 28;13(6):e0199827. doi: 10.1371/journal.pone.0199827. eCollection 2018.
85 Serum cell-free DNA methylation of OPCML and HOXD9 as a biomarker that may aid in differential diagnosis between cholangiocarcinoma and other biliary diseases.Clin Epigenetics. 2019 Mar 4;11(1):39. doi: 10.1186/s13148-019-0634-0.
86 Lentivirus-mediated overexpression of HSDL2 suppresses cell proliferation and induces apoptosis in cholangiocarcinoma.Onco Targets Ther. 2018 Oct 17;11:7133-7142. doi: 10.2147/OTT.S176410. eCollection 2018.
87 Inhibition of KLHL21 prevents cholangiocarcinoma progression through regulating cell proliferation and motility, arresting cell cycle and reducing Erk activation.Biochem Biophys Res Commun. 2018 May 15;499(3):433-440. doi: 10.1016/j.bbrc.2018.03.152. Epub 2018 Mar 31.
88 MACC1 promotes angiogenesis in cholangiocarcinoma by upregulating VEGFA.Onco Targets Ther. 2019 Mar 8;12:1893-1903. doi: 10.2147/OTT.S197319. eCollection 2019.
89 Cholangiocarcinomas associated with long-term inflammation express the activation-induced cytidine deaminase and germinal center-associated nuclear protein involved in immunoglobulin V-region diversification.Int J Oncol. 2009 Aug;35(2):287-95.
90 MORC2 promotes cell growth and metastasis in human cholangiocarcinoma and is negatively regulated by miR-186-5p.Aging (Albany NY). 2019 Jun 9;11(11):3639-3649. doi: 10.18632/aging.102003.
91 Catalytically impaired hMYH and NEIL1 mutant proteins identified in patients with primary sclerosing cholangitis and cholangiocarcinoma.Carcinogenesis. 2009 Jul;30(7):1147-54. doi: 10.1093/carcin/bgp118. Epub 2009 May 14.
92 Hepatocyte nuclear factor 6 inhibits the growth and metastasis of cholangiocarcinoma cells by regulating miR-122.J Cancer Res Clin Oncol. 2016 May;142(5):969-80. doi: 10.1007/s00432-016-2121-8. Epub 2016 Jan 29.
93 Plasma orosomucoid 2 as a potential risk marker of cholangiocarcinoma.Cancer Biomark. 2017;18(1):27-34. doi: 10.3233/CBM-160670.
94 Expression of oxysterol binding protein isoforms in opisthorchiasis-associated cholangiocarcinoma: a potential molecular marker for tumor metastasis.Parasitol Int. 2012 Mar;61(1):136-9. doi: 10.1016/j.parint.2011.07.003. Epub 2011 Jul 8.
95 PAK3 mutations responsible for severe intellectual disability and callosal agenesis inhibit cell migration.Neurobiol Dis. 2020 Mar;136:104709. doi: 10.1016/j.nbd.2019.104709. Epub 2019 Dec 14.
96 Peptidase inhibitor 15 as a novel blood diagnostic marker for cholangiocarcinoma.EBioMedicine. 2019 Feb;40:422-431. doi: 10.1016/j.ebiom.2018.12.063. Epub 2019 Jan 9.
97 Polo-like kinase 3 is associated with improved overall survival in cholangiocarcinoma.Liver Int. 2015 Nov;35(11):2448-57. doi: 10.1111/liv.12839. Epub 2015 Apr 10.
98 PRIMA-1(MET) Induces Cellular Senescence and Apoptotic Cell Death in Cholangiocarcinoma Cells.Cancer Genomics Proteomics. 2019 Nov-Dec;16(6):543-552. doi: 10.21873/cgp.20156.
99 Comparative Proteomic Analysis of Human Cholangiocarcinoma Cell Lines: S100A2 as a Potential Candidate Protein Inducer of Invasion.Dis Markers. 2015;2015:629367. doi: 10.1155/2015/629367. Epub 2015 Apr 27.
100 Weighted gene coexpression network analysis reveals hub genes involved in cholangiocarcinoma progression and prognosis.Hepatol Res. 2019 Oct;49(10):1195-1206. doi: 10.1111/hepr.13386. Epub 2019 Jul 16.
101 MART-10 represses cholangiocarcinoma cell growth and high vitamin D receptor expression indicates better prognosis for cholangiocarcinoma.Sci Rep. 2017 Mar 3;7:43773. doi: 10.1038/srep43773.
102 The microRNA-15a-PAI-2 axis in cholangiocarcinoma-associated fibroblasts promotes migration of cancer cells.Mol Cancer. 2018 Jan 18;17(1):10. doi: 10.1186/s12943-018-0760-x.
103 Sirtuin7 has an oncogenic potential via promoting the growth of cholangiocarcinoma cells.Biomed Pharmacother. 2018 Apr;100:257-266. doi: 10.1016/j.biopha.2018.02.007. Epub 2018 Feb 16.
104 Ars2 is overexpressed in human cholangiocarcinomas and its depletion increases PTEN and PDCD4 by decreasing microRNA-21.Mol Carcinog. 2013 Apr;52(4):286-96. doi: 10.1002/mc.21859. Epub 2011 Dec 28.
105 A novel TFF2 splice variant (EX2TFF2) correlates with longer overall survival time in cholangiocarcinoma.Oncol Rep. 2012 Apr;27(4):1207-12. doi: 10.3892/or.2011.1583. Epub 2011 Dec 7.
106 Suppression of thymosin 10 increases cell migration and metastasis of cholangiocarcinoma.BMC Cancer. 2013 Sep 23;13:430. doi: 10.1186/1471-2407-13-430.
107 Tetraspanin 1 promotes epithelial-to-mesenchymal transition and metastasis of cholangiocarcinoma via PI3K/AKT signaling.J Exp Clin Cancer Res. 2018 Dec 4;37(1):300. doi: 10.1186/s13046-018-0969-y.
108 Two novel fibrillin-2 mutations in congenital contractural arachnodactyly. Am J Med Genet. 2000 May 1;92(1):7-12.