General Information of Drug Combination (ID: DCPFYP9)

Drug Combination Name
Carvedilol Rosuvastatin
Indication
Disease Entry Status REF
Cirrhosis Phase 2 [1]
Component Drugs Carvedilol   DMHTEAO Rosuvastatin   DMMIQ7G
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Carvedilol
Disease Entry ICD 11 Status REF
Chronic heart failure BD1Z Approved [2]
Congestive heart failure BD10 Approved [3]
Pulmonary hypertension BB01 Approved [2]
Coronavirus Disease 2019 (COVID-19) 1D6Y Investigative [4]
Carvedilol Interacts with 3 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
HUAMN alpha-1 adrenergic receptor (ADRA1) TTDBOI7 ADA1A_HUMAN; ADA1B_HUMAN; ADA1D_HUMAN Inhibitor [8]
Adrenergic receptor Alpha-1 (ADRA1) TTG28O6 NOUNIPROTAC Antagonist [9]
HUMAN beta adrenergic receptor (BAR) TTJB8UY ADRB1_HUMAN; ADRB2_HUMAN; ADRB3_HUMAN Antagonist [4]
------------------------------------------------------------------------------------
Carvedilol Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [10]
------------------------------------------------------------------------------------
Carvedilol Interacts with 7 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [11]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [12]
UDP-glucuronosyltransferase 1A1 (UGT1A1) DEYGVN4 UD11_HUMAN Metabolism [13]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [14]
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Metabolism [15]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [16]
UDP-glucuronosyltransferase 2B7 (UGT2B7) DEB3CV1 UD2B7_HUMAN Metabolism [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 DME(s)
Carvedilol Interacts with 28 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Affects Glucuronidation [17]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Transport [18]
Beta-1 adrenergic receptor (ADRB1) OTQBWN4U ADRB1_HUMAN Increases Activity [19]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Increases Phosphorylation [20]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Increases Phosphorylation [21]
Potassium channel subfamily K member 3 (KCNK3) OTWMAV6G KCNK3_HUMAN Decreases Activity [22]
Renin (REN) OT52GZR2 RENI_HUMAN Decreases Expression [23]
Angiotensinogen (AGT) OTBZLYR3 ANGT_HUMAN Decreases Expression [24]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Decreases Expression [25]
Natriuretic peptides A (NPPA) OTMQNTNX ANF_HUMAN Decreases Expression [26]
Vasopressin-neurophysin 2-copeptin (AVP) OTAVZ76K NEU2_HUMAN Decreases Expression [27]
Insulin (INS) OTZ85PDU INS_HUMAN Decreases Expression [28]
C-reactive protein (CRP) OT0RFT8F CRP_HUMAN Decreases Expression [29]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Decreases Activity [30]
Endothelin-1 (EDN1) OTZCACEG EDN1_HUMAN Decreases Expression [31]
Beta-2 adrenergic receptor (ADRB2) OTSDOX4Q ADRB2_HUMAN Increases Phosphorylation [20]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Increases Expression [25]
Matrix metalloproteinase-9 (MMP9) OTB2QDAV MMP9_HUMAN Affects Activity [32]
Natriuretic peptides B (NPPB) OTSN2IPY ANFB_HUMAN Decreases Expression [33]
Gap junction alpha-1 protein (GJA1) OTT94MKL CXA1_HUMAN Increases Expression [34]
Interleukin-10 (IL10) OTIRFRXC IL10_HUMAN Increases Expression [35]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Increases Phosphorylation [20]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [36]
Adiponectin (ADIPOQ) OTNX23LE ADIPO_HUMAN Decreases Expression [33]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Activity [30]
Ryanodine receptor 2 (RYR2) OT0PF19E RYR2_HUMAN Increases Activity [37]
Vascular endothelial growth factor receptor 2 (KDR) OT15797V VGFR2_HUMAN Increases ADR [38]
Proto-oncogene tyrosine-protein kinase Src (SRC) OTETYX40 SRC_HUMAN Increases ADR [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 DOT(s)
Indication(s) of Rosuvastatin
Disease Entry ICD 11 Status REF
Arteriosclerosis BD40 Approved [5]
Hypercholesterolaemia 5C80.0 Approved [6]
Hyperlipidemia, familial combined, LPL related N.A. Approved [5]
Hypertriglyceridemia 5C80.1 Approved [5]
Elevated C-reactive protein MA14.15 Phase 3 [6]
Colon cancer 2B90.Z Investigative [5]
Precancerous condition N.A. Investigative [5]
Stroke 8B20 Investigative [5]
Rosuvastatin Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
HMG-CoA reductase (HMGCR) TTPADOQ HMDH_HUMAN Inhibitor [39]
------------------------------------------------------------------------------------
Rosuvastatin Interacts with 9 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 2 (ABCC2) DTFI42L MRP2_HUMAN Substrate [40]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [40]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [40]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [40]
Sodium/taurocholate cotransporting polypeptide (SLC10A1) DT56EKP NTCP_HUMAN Substrate [41]
Organic anion transporter 3 (SLC22A8) DTVP67E S22A8_HUMAN Substrate [42]
Organic anion transporting polypeptide 1A2 (SLCO1A2) DTE2B1D SO1A2_HUMAN Substrate [41]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [40]
Organic anion transporting polypeptide 2B1 (SLCO2B1) DTPFTEQ SO2B1_HUMAN Substrate [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 DTP(s)
Rosuvastatin Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [43]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [43]
Cytochrome P450 1B1 (CYP1B1) DE9QHP6 CP1B1_HUMAN Metabolism [44]
------------------------------------------------------------------------------------
Rosuvastatin Interacts with 3 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Increases ADR [45]
Kinesin-like protein KIF6 (KIF6) OTDH3MR4 KIF6_HUMAN Increases ADR [46]
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) OTRT3F3U HMDH_HUMAN Increases ADR [47]
------------------------------------------------------------------------------------

References

1 ClinicalTrials.gov (NCT03720067) Propranolol, Carvedilol and Rosuvastatin in the Prevention of Variceal Bleeding in Cirrhotic Portal Hypertension
2 Carvedilol FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 551).
4 Can beta-adrenergic blockers be used in the treatment of COVID-19 Med Hypotheses. 2020 May 5;142:109809.
5 Rosuvastatin FDA Label
6 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 2954).
7 Involvement of human hepatic UGT1A1, UGT2B4, and UGT2B7 in the glucuronidation of carvedilol. Drug Metab Dispos. 2004 Feb;32(2):235-9. doi: 10.1124/dmd.32.2.235.
8 Carvedilol increases the production of interleukin-12 and interferon-gamma and improves the survival of mice infected with the encephalomyocarditis virus. J Am Coll Cardiol. 2003 Jan 15;41(2):340-5.
9 Beta-blockers in the treatment of hypertension: are there clinically relevant differences Postgrad Med. 2009 May;121(3):90-8.
10 Tarascon Pocket Pharmacopoeia 2018 Classic Shirt-Pocket Edition.
11 Role of cytochrome P450 2D6 genetic polymorphism in carvedilol hydroxylation in vitro. Drug Des Devel Ther. 2016 Jun 8;10:1909-16.
12 Pharmacokinetic interactions study between carvedilol and some antidepressants in rat liver microsomes - a comparative study. Med Pharm Rep. 2019 Apr;92(2):158-164.
13 Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004 Nov;32(11):1201-8.
14 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
15 In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol. Drug Metab Dispos. 1997 Aug;25(8):970-7.
16 The role of CYP2C9 genetic polymorphism in carvedilol O-desmethylation in vitro. Eur J Drug Metab Pharmacokinet. 2016 Feb;41(1):79-86.
17 Contribution of polymorphisms in UDP-glucuronosyltransferase and CYP2D6 to the individual variation in disposition of carvedilol. J Pharm Pharm Sci. 2006;9(1):101-12.
18 Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein. Fundam Clin Pharmacol. 2006 Jun;20(3):273-82. doi: 10.1111/j.1472-8206.2006.00408.x.
19 Agonist actions of "beta-blockers" provide evidence for two agonist activation sites or conformations of the human beta1-adrenoceptor. Mol Pharmacol. 2003 Jun;63(6):1312-21. doi: 10.1124/mol.63.6.1312.
20 A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16657-62. doi: 10.1073/pnas.0707936104. Epub 2007 Oct 9.
21 Beta-blockers alprenolol and carvedilol stimulate beta-arrestin-mediated EGFR transactivation. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14555-60.
22 Carvedilol targets human K2P 3.1 (TASK1) K+ leak channels. Br J Pharmacol. 2011 Jul;163(5):1099-110. doi: 10.1111/j.1476-5381.2011.01319.x.
23 Effect of carvedilol and metoprolol on blood pressure, blood flow, and vascular resistance. J Cardiovasc Pharmacol. 1987;10 Suppl 11:S124-9.
24 Renal and cardiac function during alpha1-beta-blockade in congestive heart failure. Scand J Clin Lab Invest. 2002;62(2):97-104. doi: 10.1080/003655102753611717.
25 [Arterial hypertension and oxidative stress induced by cyclosporin. Effect of carvedilol]. Ann Ital Med Int. 2001 Apr-Jun;16(2):101-5.
26 Effects of carvedilol on atrial natriuretic peptide, catecholamines, and hemodynamics in hypertension at rest and during exercise. J Cardiovasc Pharmacol. 1992;19 Suppl 1:S90-6. doi: 10.1097/00005344-199219001-00018.
27 Lower plasma noradrenaline and blood viscosity on carvedilol vs atenolol in men with recent myocardial infarction. Blood Press. 2002;11(6):377-84. doi: 10.1080/080370502321095357.
28 After myocardial infarction carvedilol improves insulin resistance compared to metoprolol. Clin Res Cardiol. 2006 Feb;95(2):99-104. doi: 10.1007/s00392-006-0336-4. Epub 2006 Feb 6.
29 Effects of carvedilol on oxidative stress in polymorphonuclear and mononuclear cells in patients with essential hypertension. Am J Med. 2004 Apr 1;116(7):460-5. doi: 10.1016/j.amjmed.2003.10.029.
30 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
31 Carvedilol inhibits endothelin-1 biosynthesis in cultured human coronary artery endothelial cells. J Mol Cell Cardiol. 1998 Jan;30(1):167-73. doi: 10.1006/jmcc.1997.0582.
32 Adrenoceptor blockade alters plasma gelatinase activity in patients with heart failure and MMP-9 promoter activity in a human cell line (ECV304). Pharmacol Res. 2006 Jul;54(1):57-64. doi: 10.1016/j.phrs.2006.02.006. Epub 2006 Feb 28.
33 Effect of carvedilol on plasma adiponectin concentration in patients with chronic heart failure. Circ J. 2009 Jun;73(6):1067-73. doi: 10.1253/circj.cj-08-1026. Epub 2009 Apr 14.
34 Reduced expression of endothelial connexins 43 and 37 in hypertensive rats is rectified after 7-day carvedilol treatment. Am J Hypertens. 2006 Feb;19(2):129-35. doi: 10.1016/j.amjhyper.2005.08.020.
35 Carvedilol modulates in-vitro granulocyte-macrophage colony-stimulating factor-induced interleukin-10 production in U937 cells and human monocytes. Immunol Invest. 2003 Feb;32(1-2):43-58. doi: 10.1081/imm-120019207.
36 Antiarrhythmic drug carvedilol inhibits HERG potassium channels. Cardiovasc Res. 2001 Feb 1;49(2):361-70. doi: 10.1016/s0008-6363(00)00265-0.
37 Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation. 2003 May 20;107(19):2459-66. doi: 10.1161/01.CIR.0000068316.53218.49. Epub 2003 May 12.
38 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
39 New dimension of statin action on ApoB atherogenicity. Clin Cardiol. 2003 Jan;26(1 Suppl 1):I7-10.
40 Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos. 2008 Oct;36(10):2014-23.
41 Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006 May;130(6):1793-806.
42 The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther. 2007 Sep;322(3):1221-7.
43 Effects of acid and lactone forms of eight HMG-CoA reductase inhibitors on CYP-mediated metabolism and MDR1-mediated transport. Pharm Res. 2006 Mar;23(3):506-12.
44 Pharmacokinetics of rosuvastatin when coadministered with rifampicin in healthy males: a randomized, single-blind, placebo-controlled, crossover study. Clin Ther. 2008 Jul;30(7):1283-9.
45 ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther. 2010 May;87(5):558-62.
46 Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J Am Coll Cardiol. 2008 Jan 29;51(4):435-43. doi: 10.1016/j.jacc.2007.05.057.
47 Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA. 2004 Jun 16;291(23):2821-7. doi: 10.1001/jama.291.23.2821.