General Information of Drug Off-Target (DOT) (ID: OT1ZWY32)

DOT Name Gasdermin-E (GSDME)
Synonyms Inversely correlated with estrogen receptor expression 1; ICERE-1; Non-syndromic hearing impairment protein 5
Gene Name GSDME
Related Disease
Autosomal dominant nonsyndromic hearing loss ( )
Autosomal dominant nonsyndromic hearing loss 1 ( )
Adenocarcinoma ( )
Advanced cancer ( )
Autosomal dominant nonsyndromic hearing loss 5 ( )
Bone osteosarcoma ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Hepatocellular carcinoma ( )
Intestinal cancer ( )
Lung cancer ( )
Lung carcinoma ( )
Major depressive disorder ( )
Melanoma ( )
Neoplasm ( )
Osteosarcoma ( )
Rheumatoid arthritis ( )
Schizophrenia ( )
Squamous cell carcinoma ( )
Autoimmune disease ( )
Gastric cancer ( )
Stomach cancer ( )
Stroke ( )
Bipolar disorder ( )
Sensorineural hearing loss disorder ( )
UniProt ID
GSDME_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF04598 ; PF17708
Sequence
MFAKATRNFLREVDADGDLIAVSNLNDSDKLQLLSLVTKKKRFWCWQRPKYQFLSLTLGD
VLIEDQFPSPVVVESDFVKYEGKFANHVSGTLETALGKVKLNLGGSSRVESQSSFGTLRK
QEVDLQQLIRDSAERTINLRNPVLQQVLEGRNEVLCVLTQKITTMQKCVISEHMQVEEKC
GGIVGIQTKTVQVSATEDGNVTKDSNVVLEIPAATTIAYGVIELYVKLDGQFEFCLLRGK
QGGFENKKRIDSVYLDPLVFREFAFIDMPDAAHGISSQDGPLSVLKQATLLLERNFHPFA
ELPEPQQTALSDIFQAVLFDDELLMVLEPVCDDLVSGLSPTVAVLGELKPRQQQDLVAFL
QLVGCSLQGGCPGPEDAGSKQLFMTAYFLVSALAEMPDSAAALLGTCCKLQIIPTLCHLL
RALSDDGVSDLEDPTLTPLKDTERFGIVQRLFASADISLERLKSSVKAVILKDSKVFPLL
LCITLNGLCALGREHS
Function
[Gasdermin-E]: Precursor of a pore-forming protein that converts non-inflammatory apoptosis to pyroptosis. This form constitutes the precursor of the pore-forming protein: upon cleavage, the released N-terminal moiety (Gasdermin-E, N-terminal) binds to membranes and forms pores, triggering pyroptosis ; [Gasdermin-E, N-terminal]: Pore-forming protein produced by cleavage by CASP3 or granzyme B (GZMB), which converts non-inflammatory apoptosis to pyroptosis or promotes granzyme-mediated pyroptosis, respectively. After cleavage, moves to the plasma membrane, homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the release of mature interleukins (IL1B and IL16) and triggering pyroptosis. Binds to inner leaflet lipids, bisphosphorylated phosphatidylinositols, such as phosphatidylinositol (4,5)-bisphosphate. Cleavage by CASP3 switches CASP3-mediated apoptosis induced by TNF or danger signals, such as chemotherapy drugs, to pyroptosis. Mediates secondary necrosis downstream of the mitochondrial apoptotic pathway and CASP3 activation as well as in response to viral agents. Exhibits bactericidal activity. Cleavage by GZMB promotes tumor suppressor activity by triggering robust anti-tumor immunity. Suppresses tumors by mediating granzyme-mediated pyroptosis in target cells of natural killer (NK) cells: cleavage by granzyme B (GZMB), delivered to target cells from NK-cells, triggers pyroptosis of tumor cells and tumor suppression. May play a role in the p53/TP53-regulated cellular response to DNA damage ; [Gasdermin-E, N-terminal]: (Microbial infection) Pore-forming protein, which promotes maternal placental pyroptosis in response to Zika virus infection, contributing to adverse fetal outcomes.
Tissue Specificity Expressed in cochlea . Low level of expression in heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas, with highest expression in placenta .
KEGG Pathway
Cytosolic D.-sensing pathway (hsa04623 )
Reactome Pathway
Pyroptosis (R-HSA-5620971 )
Regulation of TLR by endogenous ligand (R-HSA-5686938 )
Defective pyroptosis (R-HSA-9710421 )
Release of apoptotic factors from the mitochondria (R-HSA-111457 )

Molecular Interaction Atlas (MIA) of This DOT

29 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Autosomal dominant nonsyndromic hearing loss DISYC1G0 Definitive Autosomal dominant [1]
Autosomal dominant nonsyndromic hearing loss 1 DISDZ6CC Definitive Biomarker [2]
Adenocarcinoma DIS3IHTY Strong Altered Expression [3]
Advanced cancer DISAT1Z9 Strong Posttranslational Modification [4]
Autosomal dominant nonsyndromic hearing loss 5 DISZ795Z Strong Autosomal dominant [5]
Bone osteosarcoma DIST1004 Strong Biomarker [6]
Breast cancer DIS7DPX1 Strong Biomarker [7]
Breast carcinoma DIS2UE88 Strong Biomarker [7]
Breast neoplasm DISNGJLM Strong Altered Expression [8]
Colon cancer DISVC52G Strong Altered Expression [9]
Colon carcinoma DISJYKUO Strong Altered Expression [9]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [4]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [10]
Intestinal cancer DISYCNF1 Strong Biomarker [11]
Lung cancer DISCM4YA Strong Altered Expression [12]
Lung carcinoma DISTR26C Strong Altered Expression [3]
Major depressive disorder DIS4CL3X Strong Genetic Variation [13]
Melanoma DIS1RRCY Strong Biomarker [14]
Neoplasm DISZKGEW Strong Biomarker [15]
Osteosarcoma DISLQ7E2 Strong Biomarker [6]
Rheumatoid arthritis DISTSB4J Strong Biomarker [16]
Schizophrenia DISSRV2N Strong Genetic Variation [17]
Squamous cell carcinoma DISQVIFL Strong Biomarker [18]
Autoimmune disease DISORMTM moderate Biomarker [19]
Gastric cancer DISXGOUK moderate Biomarker [20]
Stomach cancer DISKIJSX moderate Biomarker [20]
Stroke DISX6UHX moderate Genetic Variation [21]
Bipolar disorder DISAM7J2 Limited Genetic Variation [22]
Sensorineural hearing loss disorder DISJV45Z Limited Biomarker [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Gasdermin-E (GSDME). [24]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Gasdermin-E (GSDME). [36]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Gasdermin-E (GSDME). [43]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Gasdermin-E (GSDME). [36]
------------------------------------------------------------------------------------
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Gasdermin-E (GSDME). [25]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Gasdermin-E (GSDME). [26]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Gasdermin-E (GSDME). [27]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Gasdermin-E (GSDME). [28]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Gasdermin-E (GSDME). [29]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Gasdermin-E (GSDME). [30]
Quercetin DM3NC4M Approved Quercetin increases the expression of Gasdermin-E (GSDME). [31]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Gasdermin-E (GSDME). [32]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Gasdermin-E (GSDME). [33]
Selenium DM25CGV Approved Selenium decreases the expression of Gasdermin-E (GSDME). [34]
Menadione DMSJDTY Approved Menadione affects the expression of Gasdermin-E (GSDME). [35]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Gasdermin-E (GSDME). [37]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Gasdermin-E (GSDME). [33]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Gasdermin-E (GSDME). [33]
Prednisolone DMQ8FR2 Approved Prednisolone decreases the expression of Gasdermin-E (GSDME). [33]
Methylprednisolone DM4BDON Approved Methylprednisolone decreases the expression of Gasdermin-E (GSDME). [33]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Gasdermin-E (GSDME). [39]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Gasdermin-E (GSDME). [40]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Gasdermin-E (GSDME). [41]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Gasdermin-E (GSDME). [42]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Gasdermin-E (GSDME). [45]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Gasdermin-E (GSDME). [46]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Gasdermin-E (GSDME). [47]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Dihydroartemisinin DMBXVMZ Approved Dihydroartemisinin increases the cleavage of Gasdermin-E (GSDME). [38]
Piperlongumine DMIZCOE Preclinical Piperlongumine increases the cleavage of Gasdermin-E (GSDME). [44]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Distinct Expression Patterns Of Causative Genes Responsible For Hereditary Progressive Hearing Loss In Non-Human Primate Cochlea.Sci Rep. 2016 Feb 26;6:22250. doi: 10.1038/srep22250.
3 Molecular Targeted Therapies Elicit Concurrent Apoptotic and GSDME-Dependent Pyroptotic Tumor Cell Death.Clin Cancer Res. 2018 Dec 1;24(23):6066-6077. doi: 10.1158/1078-0432.CCR-18-1478. Epub 2018 Jul 30.
4 Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer.Cancer Med. 2019 May;8(5):2133-2145. doi: 10.1002/cam4.2103. Epub 2019 Apr 16.
5 A yeast model for the study of human DFNA5, a gene mutated in nonsyndromic hearing impairment. Biochim Biophys Acta. 2003 Jul 14;1638(2):179-86. doi: 10.1016/s0925-4439(03)00083-8.
6 Dioscin inhibits the growth of human osteosarcoma by inducing G2/M-phase arrest, apoptosis, and GSDME-dependent cell death in vitro and in vivo.J Cell Physiol. 2020 Mar;235(3):2911-2924. doi: 10.1002/jcp.29197. Epub 2019 Sep 18.
7 DFNA5 promoter methylation a marker for breast tumorigenesis.Oncotarget. 2017 May 9;8(19):31948-31958. doi: 10.18632/oncotarget.16654.
8 The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein.Eur J Hum Genet. 2011 Sep;19(9):965-73. doi: 10.1038/ejhg.2011.63. Epub 2011 Apr 27.
9 Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma.Oncogene. 2008 Jun 5;27(25):3624-34. doi: 10.1038/sj.onc.1211021. Epub 2008 Jan 28.
10 The expression and regulation of DFNA5 in human hepatocellular carcinoma DFNA5 in hepatocellular carcinoma.Mol Biol Rep. 2013 Dec;40(12):6525-31. doi: 10.1007/s11033-013-2581-8. Epub 2013 Oct 24.
11 Determination of the Potential Tumor-Suppressive Effects of Gsdme in a Chemically Induced and in a Genetically Modified Intestinal Cancer Mouse Model.Cancers (Basel). 2019 Aug 20;11(8):1214. doi: 10.3390/cancers11081214.
12 Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation.Apoptosis. 2019 Apr;24(3-4):312-325. doi: 10.1007/s10495-019-01515-1.
13 Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways.Nat Genet. 2018 Jul;50(7):920-927. doi: 10.1038/s41588-018-0151-7. Epub 2018 Jun 25.
14 Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation.Nat Commun. 2019 Apr 11;10(1):1689. doi: 10.1038/s41467-019-09397-2.
15 Mutant BRAF and MEK Inhibitors Regulate the Tumor Immune Microenvironment via Pyroptosis.Cancer Discov. 2020 Feb;10(2):254-269. doi: 10.1158/2159-8290.CD-19-0672. Epub 2019 Dec 3.
16 Gene expression profiling of rheumatoid arthritis synovial cells treated with antirheumatic drugs. J Biomol Screen. 2007 Apr;12(3):328-40. doi: 10.1177/1087057107299261. Epub 2007 Mar 22.
17 Association of Schizophrenia Risk With Disordered Niacin Metabolism in an Indian Genome-wide Association Study.JAMA Psychiatry. 2019 Oct 1;76(10):1026-1034. doi: 10.1001/jamapsychiatry.2019.1335.
18 Association of DFNA5, SYK, and NELL1 variants along with HPV infection in oral cancer among the prolonged tobacco-chewers.Tumour Biol. 2018 Aug;40(8):1010428318793023. doi: 10.1177/1010428318793023.
19 Gasdermins and their role in immunity and inflammation.J Exp Med. 2019 Nov 4;216(11):2453-2465. doi: 10.1084/jem.20190545. Epub 2019 Sep 23.
20 GSDME mediates caspase-3-dependent pyroptosis in gastric cancer.Biochem Biophys Res Commun. 2018 Jan 1;495(1):1418-1425. doi: 10.1016/j.bbrc.2017.11.156. Epub 2017 Nov 26.
21 Genetic mapping and exome sequencing identify 2 mutations associated with stroke protection in pediatric patients with sickle cell anemia.Blood. 2013 Apr 18;121(16):3237-45. doi: 10.1182/blood-2012-10-464156. Epub 2013 Feb 19.
22 Genome-wide association study identifies 30 loci associated with bipolar disorder.Nat Genet. 2019 May;51(5):793-803. doi: 10.1038/s41588-019-0397-8. Epub 2019 May 1.
23 Further evidence for "gain-of-function" mechanism of DFNA5 related hearing loss.Sci Rep. 2018 May 30;8(1):8424. doi: 10.1038/s41598-018-26554-7.
24 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
25 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
26 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
27 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
28 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
29 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
30 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
31 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
32 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
33 Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther. 2009;11(1):R15.
34 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
35 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
36 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
37 Gene expression profile of human lymphoid CEM cells sensitive and resistant to glucocorticoid-evoked apoptosis. Genomics. 2003 Jun;81(6):543-55.
38 Dihydroartemisinin mediating PKM2-caspase-8/3-GSDME axis for pyroptosis in esophageal squamous cell carcinoma. Chem Biol Interact. 2021 Dec 1;350:109704. doi: 10.1016/j.cbi.2021.109704. Epub 2021 Oct 13.
39 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
40 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
41 BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood. 2012 Oct 4;120(14):2843-52.
42 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
43 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
44 Piperlongumine analogue L50377 induces pyroptosis via ROS mediated NF-B suppression in non-small-cell lung cancer. Chem Biol Interact. 2019 Nov 1;313:108820. doi: 10.1016/j.cbi.2019.108820. Epub 2019 Sep 10.
45 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
46 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
47 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.