General Information of Drug Off-Target (DOT) (ID: OT3NHO99)

DOT Name Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2)
Synonyms EC 2.7.8.27; Sphingomyelin synthase 2
Gene Name SGMS2
Related Disease
Alzheimer disease ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Bone cancer ( )
Bone osteosarcoma ( )
Calvarial doughnut lesions-bone fragility syndrome ( )
Colitis ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Depression ( )
Fatty liver disease ( )
Glioma ( )
Hyperinsulinemia ( )
Neoplasm ( )
Obesity ( )
Osteochondrodysplasia ( )
Skeletal dysplasia ( )
Osteoporosis ( )
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Non-insulin dependent diabetes ( )
Pulmonary emphysema ( )
Type-1/2 diabetes ( )
UniProt ID
SMS2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.7.8.27
Pfam ID
PF14360
Sequence
MDIIETAKLEEHLENQPSDPTNTYARPAEPVEEENKNGNGKPKSLSSGLRKGTKKYPDYI
QIAMPTESRNKFPLEWWKTGIAFIYAVFNLVLTTVMITVVHERVPPKELSPPLPDKFFDY
IDRVKWAFSVSEINGIILVGLWITQWLFLRYKSIVGRRFCFIIGTLYLYRCITMYVTTLP
VPGMHFQCAPKLNGDSQAKVQRILRLISGGGLSITGSHILCGDFLFSGHTVTLTLTYLFI
KEYSPRHFWWYHLICWLLSAAGIICILVAHEHYTIDVIIAYYITTRLFWWYHSMANEKNL
KVSSQTNFLSRAWWFPIFYFFEKNVQGSIPCCFSWPLSWPPGCFKSSCKKYSRVQKIGED
NEKST
Function
Sphingomyelin synthase that primarily contributes to sphingomyelin synthesis and homeostasis at the plasma membrane. Catalyzes the reversible transfer of phosphocholine moiety in sphingomyelin biosynthesis: in the forward reaction transfers phosphocholine head group of phosphatidylcholine (PC) on to ceramide (CER) to form ceramide phosphocholine (sphingomyelin, SM) and diacylglycerol (DAG) as by-product, and in the reverse reaction transfers phosphocholine from SM to DAG to form PC and CER. The direction of the reaction appears to depend on the levels of CER and DAG in the plasma membrane. Does not use free phosphorylcholine or CDP-choline as donors. Can also transfer phosphoethanolamine head group of phosphatidylethanolamine (PE) on to ceramide (CER) to form ceramide phosphoethanolamine (CPE). Regulates receptor-mediated signal transduction via mitogenic DAG and proapoptotic CER, as well as via SM, a structural component of membrane rafts that serve as platforms for signal transduction and protein sorting. To a lesser extent, plays a role in secretory transport via regulation of DAG pool at the Golgi apparatus and its downstream effects on PRKD1. Required for normal bone matrix mineralization.
Tissue Specificity Brain, heart, kidney, liver, muscle and stomach. Also expressed in a number of cell lines such as carcinoma HeLa cells, hepatoma Hep-G2 cells, and colon carcinoma Caco-2 cells.
KEGG Pathway
Sphingolipid metabolism (hsa00600 )
Metabolic pathways (hsa01100 )
Sphingolipid sig.ling pathway (hsa04071 )
Reactome Pathway
Sphingolipid de novo biosynthesis (R-HSA-1660661 )

Molecular Interaction Atlas (MIA) of This DOT

25 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Alzheimer disease DISF8S70 Strong Altered Expression [1]
Arteriosclerosis DISK5QGC Strong Biomarker [2]
Atherosclerosis DISMN9J3 Strong Biomarker [2]
Bone cancer DIS38NA0 Strong Biomarker [3]
Bone osteosarcoma DIST1004 Strong Biomarker [3]
Calvarial doughnut lesions-bone fragility syndrome DIS1Z0LO Strong Autosomal dominant [4]
Colitis DISAF7DD Strong Biomarker [5]
Colon cancer DISVC52G Strong Biomarker [5]
Colon carcinoma DISJYKUO Strong Biomarker [5]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [5]
Depression DIS3XJ69 Strong Biomarker [6]
Fatty liver disease DIS485QZ Strong Altered Expression [7]
Glioma DIS5RPEH Strong Biomarker [8]
Hyperinsulinemia DISIDWT6 Strong Biomarker [9]
Neoplasm DISZKGEW Strong Biomarker [5]
Obesity DIS47Y1K Strong Biomarker [9]
Osteochondrodysplasia DIS9SPWW Strong Genetic Variation [4]
Skeletal dysplasia DIS5Z8U6 Strong Genetic Variation [4]
Osteoporosis DISF2JE0 moderate Genetic Variation [4]
Advanced cancer DISAT1Z9 Limited Biomarker [10]
Breast cancer DIS7DPX1 Limited Altered Expression [10]
Breast carcinoma DIS2UE88 Limited Altered Expression [10]
Non-insulin dependent diabetes DISK1O5Z Limited Biomarker [11]
Pulmonary emphysema DIS5M7HZ Limited Altered Expression [12]
Type-1/2 diabetes DISIUHAP Limited Biomarker [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [14]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [15]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [16]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate affects the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [17]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [18]
Triclosan DMZUR4N Approved Triclosan increases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [19]
Marinol DM70IK5 Approved Marinol decreases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [20]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [21]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [22]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [23]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [25]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [26]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [14]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [28]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [29]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [30]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate decreases the expression of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [24]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Phosphatidylcholine:ceramide cholinephosphotransferase 2 (SGMS2). [27]
------------------------------------------------------------------------------------

References

1 Inhibition of sphingomyelin synthase 1 ameliorates alzheimer-like pathology in APP/PS1 transgenic mice through promoting lysosomal degradation of BACE1.Exp Neurol. 2019 Jan;311:67-79. doi: 10.1016/j.expneurol.2018.09.012. Epub 2018 Sep 20.
2 Discovery, synthesis and anti-atherosclerotic activities of a novel selective sphingomyelin synthase 2 inhibitor.Eur J Med Chem. 2019 Feb 1;163:864-882. doi: 10.1016/j.ejmech.2018.12.028. Epub 2018 Dec 13.
3 Simultaneous inhibition of NMDA and mGlu1/5 receptors by levo-corydalmine in rat spinal cord attenuates bone cancer pain.Int J Cancer. 2017 Aug 15;141(4):805-815. doi: 10.1002/ijc.30780. Epub 2017 May 29.
4 Osteoporosis and skeletal dysplasia caused by pathogenic variants in SGMS2. JCI Insight. 2019 Apr 4;4(7):e126180. doi: 10.1172/jci.insight.126180. eCollection 2019 Apr 4.
5 Sphingomyelin synthase 2 deficiency inhibits the induction of murine colitis-associated colon cancer.FASEB J. 2017 Sep;31(9):3816-3830. doi: 10.1096/fj.201601225RR. Epub 2017 May 18.
6 Stressful learning paradigm precludes manifestation of cognitive ability in sphingomyelin synthase-2 knockout mice.Behav Brain Res. 2017 Feb 15;319:25-30. doi: 10.1016/j.bbr.2016.11.010. Epub 2016 Nov 10.
7 Sphingomyelin synthase 2 activity and liver steatosis: an effect of ceramide-mediated peroxisome proliferator-activated receptor 2 suppression.Arterioscler Thromb Vasc Biol. 2013 Jul;33(7):1513-20. doi: 10.1161/ATVBAHA.113.301498. Epub 2013 May 2.
8 The Opposing Contribution of SMS1 and SMS2 to Glioma Progression and Their Value in the Therapeutic Response to 2OHOA.Cancers (Basel). 2019 Jan 14;11(1):88. doi: 10.3390/cancers11010088.
9 Reducing plasma membrane sphingomyelin increases insulin sensitivity.Mol Cell Biol. 2011 Oct;31(20):4205-18. doi: 10.1128/MCB.05893-11. Epub 2011 Aug 15.
10 Sphingomyelin synthase 2 promotes an aggressive breast cancer phenotype by disrupting the homoeostasis of ceramide and sphingomyelin.Cell Death Dis. 2019 Feb 15;10(3):157. doi: 10.1038/s41419-019-1303-0.
11 Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes.J Biol Chem. 2011 Aug 12;286(32):28544-55. doi: 10.1074/jbc.M111.255646. Epub 2011 Jun 13.
12 Airway Resistance Caused by Sphingomyelin Synthase 2 Insufficiency in Response to Cigarette Smoke.Am J Respir Cell Mol Biol. 2020 Mar;62(3):342-353. doi: 10.1165/rcmb.2019-0133OC.
13 The sphingomyelin synthase family: proteins, diseases, and inhibitors.Biol Chem. 2017 Nov 27;398(12):1319-1325. doi: 10.1515/hsz-2017-0148.
14 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
15 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
16 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
17 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
18 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
19 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
20 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
21 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
22 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
23 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
24 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
25 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
26 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
27 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
28 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
29 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
30 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
31 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.