General Information of Drug Off-Target (DOT) (ID: OT47LWI9)

DOT Name Tuberin (TSC2)
Synonyms Tuberous sclerosis 2 protein
Gene Name TSC2
Related Disease
Clear cell renal carcinoma ( )
Epilepsy ( )
Kidney cancer ( )
Kidney neoplasm ( )
Lung lymphangioleiomyomatosis ( )
Renal cell carcinoma ( )
Tuberculosis ( )
Tuberous sclerosis ( )
Tuberous sclerosis 1 ( )
Tuberous sclerosis 2 ( )
Advanced cancer ( )
Autism spectrum disorder ( )
Benign neoplasm ( )
Carcinoma ( )
Chordoma ( )
Cystic kidney disease ( )
Hamartoma ( )
Hereditary neoplastic syndrome ( )
Hydrocephalus ( )
Intellectual disability ( )
Lymphangioleiomyomatosis ( )
Neoplasm with perivascular epithelioid cell differentiation ( )
Pancreatic tumour ( )
Polycystic kidney disease ( )
Precancerous condition ( )
Spasm ( )
Thyroid gland carcinoma ( )
Uterine fibroids ( )
Leiomyoma ( )
Neurodegenerative disease ( )
Renal carcinoma ( )
Obsolete tuberous sclerosis complex ( )
Acute monocytic leukemia ( )
Adult hepatocellular carcinoma ( )
Astrocytoma ( )
Autism ( )
Brain disease ( )
Ependymoma ( )
Head-neck squamous cell carcinoma ( )
Squamous cell carcinoma ( )
West syndrome ( )
UniProt ID
TSC2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7DL2
Pfam ID
PF11864 ; PF02145 ; PF03542
Sequence
MAKPTSKDSGLKEKFKILLGLGTPRPNPRSAEGKQTEFIITAEILRELSMECGLNNRIRM
IGQICEVAKTKKFEEHAVEALWKAVADLLQPERPLEARHAVLALLKAIVQGQGERLGVLR
ALFFKVIKDYPSNEDLHERLEVFKALTDNGRHITYLEEELADFVLQWMDVGLSSEFLLVL
VNLVKFNSCYLDEYIARMVQMICLLCVRTASSVDIEVSLQVLDAVVCYNCLPAESLPLFI
VTLCRTINVKELCEPCWKLMRNLLGTHLGHSAIYNMCHLMEDRAYMEDAPLLRGAVFFVG
MALWGAHRLYSLRNSPTSVLPSFYQAMACPNEVVSYEIVLSITRLIKKYRKELQVVAWDI
LLNIIERLLQQLQTLDSPELRTIVHDLLTTVEELCDQNEFHGSQERYFELVERCADQRPE
SSLLNLISYRAQSIHPAKDGWIQNLQALMERFFRSESRGAVRIKVLDVLSFVLLINRQFY
EEELINSVVISQLSHIPEDKDHQVRKLATQLLVDLAEGCHTHHFNSLLDIIEKVMARSLS
PPPELEERDVAAYSASLEDVKTAVLGLLVILQTKLYTLPASHATRVYEMLVSHIQLHYKH
SYTLPIASSIRLQAFDFLLLLRADSLHRLGLPNKDGVVRFSPYCVCDYMEPERGSEKKTS
GPLSPPTGPPGPAPAGPAVRLGSVPYSLLFRVLLQCLKQESDWKVLKLVLGRLPESLRYK
VLIFTSPCSVDQLCSALCSMLSGPKTLERLRGAPEGFSRTDLHLAVVPVLTALISYHNYL
DKTKQREMVYCLEQGLIHRCASQCVVALSICSVEMPDIIIKALPVLVVKLTHISATASMA
VPLLEFLSTLARLPHLYRNFAAEQYASVFAISLPYTNPSKFNQYIVCLAHHVIAMWFIRC
RLPFRKDFVPFITKGLRSNVLLSFDDTPEKDSFRARSTSLNERPKSLRIARPPKQGLNNS
PPVKEFKESSAAEAFRCRSISVSEHVVRSRIQTSLTSASLGSADENSVAQADDSLKNLHL
ELTETCLDMMARYVFSNFTAVPKRSPVGEFLLAGGRTKTWLVGNKLVTVTTSVGTGTRSL
LGLDSGELQSGPESSSSPGVHVRQTKEAPAKLESQAGQQVSRGARDRVRSMSGGHGLRVG
ALDVPASQFLGSATSPGPRTAPAAKPEKASAGTRVPVQEKTNLAAYVPLLTQGWAEILVR
RPTGNTSWLMSLENPLSPFSSDINNMPLQELSNALMAAERFKEHRDTALYKSLSVPAAST
AKPPPLPRSNTVASFSSLYQSSCQGQLHRSVSWADSAVVMEEGSPGEVPVLVEPPGLEDV
EAALGMDRRTDAYSRSSSVSSQEEKSLHAEELVGRGIPIERVVSSEGGRPSVDLSFQPSQ
PLSKSSSSPELQTLQDILGDPGDKADVGRLSPEVKARSQSGTLDGESAAWSASGEDSRGQ
PEGPLPSSSPRSPSGLRPRGYTISDSAPSRRGKRVERDALKSRATASNAEKVPGINPSFV
FLQLYHSPFFGDESNKPILLPNESQSFERSVQLLDQIPSYDTHKIAVLYVGEGQSNSELA
ILSNEHGSYRYTEFLTGLGRLIELKDCQPDKVYLGGLDVCGEDGQFTYCWHDDIMQAVFH
IATLMPTKDVDKHRCDKKRHLGNDFVSIVYNDSGEDFKLGTIKGQFNFVHVIVTPLDYEC
NLVSLQCRKDMEGLVDTSVAKIVSDRNLPFVARQMALHANMASQVHHSRSNPTDIYPSKW
IARLRHIKRLRQRICEEAAYSNPSLPLVHPPSHSKAPAQTPAEPTPGYEVGQRKRLISSV
EDFTEFV
Function
Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth. Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1. In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling. The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1. Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling. Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5.
Tissue Specificity Liver, brain, heart, lymphocytes, fibroblasts, biliary epithelium, pancreas, skeletal muscle, kidney, lung and placenta.
KEGG Pathway
Phospholipase D sig.ling pathway (hsa04072 )
p53 sig.ling pathway (hsa04115 )
Autophagy - animal (hsa04140 )
mTOR sig.ling pathway (hsa04150 )
PI3K-Akt sig.ling pathway (hsa04151 )
AMPK sig.ling pathway (hsa04152 )
Longevity regulating pathway (hsa04211 )
Cellular senescence (hsa04218 )
Thermogenesis (hsa04714 )
Insulin sig.ling pathway (hsa04910 )
Thyroid hormone sig.ling pathway (hsa04919 )
Human cytomegalovirus infection (hsa05163 )
Human papillomavirus infection (hsa05165 )
Herpes simplex virus 1 infection (hsa05168 )
Choline metabolism in cancer (hsa05231 )
Reactome Pathway
Inhibition of TSC complex formation by PKB (R-HSA-165181 )
AKT phosphorylates targets in the cytosol (R-HSA-198323 )
Energy dependent regulation of mTOR by LKB1-AMPK (R-HSA-380972 )
TP53 Regulates Metabolic Genes (R-HSA-5628897 )
Constitutive Signaling by AKT1 E17K in Cancer (R-HSA-5674400 )
TBC/RABGAPs (R-HSA-8854214 )
Macroautophagy (R-HSA-1632852 )

Molecular Interaction Atlas (MIA) of This DOT

41 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Clear cell renal carcinoma DISBXRFJ Definitive Genetic Variation [1]
Epilepsy DISBB28L Definitive Biomarker [2]
Kidney cancer DISBIPKM Definitive Biomarker [3]
Kidney neoplasm DISBNZTN Definitive Biomarker [4]
Lung lymphangioleiomyomatosis DISFL3YB Definitive Autosomal dominant [5]
Renal cell carcinoma DISQZ2X8 Definitive Genetic Variation [1]
Tuberculosis DIS2YIMD Definitive Biomarker [6]
Tuberous sclerosis DISEMUGZ Definitive Autosomal dominant [7]
Tuberous sclerosis 1 DIS07GDN Definitive Biomarker [8]
Tuberous sclerosis 2 DISR6GKZ Definitive Autosomal dominant [9]
Advanced cancer DISAT1Z9 Strong Biomarker [10]
Autism spectrum disorder DISXK8NV Strong Genetic Variation [11]
Benign neoplasm DISDUXAD Strong Genetic Variation [12]
Carcinoma DISH9F1N Strong Biomarker [13]
Chordoma DISCHJE7 Strong Genetic Variation [14]
Cystic kidney disease DISRT1LM Strong Altered Expression [15]
Hamartoma DIS0I87H Strong Genetic Variation [16]
Hereditary neoplastic syndrome DISGXLG5 Strong CausalMutation [17]
Hydrocephalus DISIZUF7 Strong Biomarker [18]
Intellectual disability DISMBNXP Strong Genetic Variation [19]
Lymphangioleiomyomatosis DISR0RNB Strong Autosomal dominant [9]
Neoplasm with perivascular epithelioid cell differentiation DIS8V0NT Strong Genetic Variation [12]
Pancreatic tumour DIS3U0LK Strong Biomarker [20]
Polycystic kidney disease DISWS3UY Strong Genetic Variation [21]
Precancerous condition DISV06FL Strong Biomarker [22]
Spasm DIS51WT2 Strong Biomarker [23]
Thyroid gland carcinoma DISMNGZ0 Strong Biomarker [24]
Uterine fibroids DISBZRMJ Strong Biomarker [25]
Leiomyoma DISLDDFN moderate Altered Expression [26]
Neurodegenerative disease DISM20FF moderate Biomarker [27]
Renal carcinoma DISER9XT moderate Biomarker [3]
Obsolete tuberous sclerosis complex DIS46L2J Supportive Autosomal dominant [28]
Acute monocytic leukemia DIS28NEL Limited Genetic Variation [29]
Adult hepatocellular carcinoma DIS6ZPAI Limited Genetic Variation [30]
Astrocytoma DISL3V18 Limited Genetic Variation [31]
Autism DISV4V1Z Limited Biomarker [32]
Brain disease DIS6ZC3X Limited Biomarker [33]
Ependymoma DISUMRNZ Limited Biomarker [34]
Head-neck squamous cell carcinoma DISF7P24 Limited Altered Expression [35]
Squamous cell carcinoma DISQVIFL Limited Biomarker [36]
West syndrome DISLIAU9 Limited Genetic Variation [37]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Tuberin (TSC2). [38]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Tuberin (TSC2). [43]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the phosphorylation of Tuberin (TSC2). [49]
Methamphetamine DMPM4SK Approved Methamphetamine increases the phosphorylation of Tuberin (TSC2). [51]
Curcumin DMQPH29 Phase 3 Curcumin decreases the phosphorylation of Tuberin (TSC2). [54]
GDC-0980/RG7422 DMF3MV1 Phase 2 GDC-0980/RG7422 decreases the phosphorylation of Tuberin (TSC2). [55]
GSK690693 DMRBVHE Phase 1 GSK690693 decreases the phosphorylation of Tuberin (TSC2). [55]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Tuberin (TSC2). [56]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Tuberin (TSC2). [39]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Tuberin (TSC2). [40]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Tuberin (TSC2). [41]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tuberin (TSC2). [42]
Quercetin DM3NC4M Approved Quercetin increases the expression of Tuberin (TSC2). [44]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Tuberin (TSC2). [45]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Tuberin (TSC2). [46]
Selenium DM25CGV Approved Selenium increases the expression of Tuberin (TSC2). [47]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Tuberin (TSC2). [48]
Azacitidine DMTA5OE Approved Azacitidine increases the expression of Tuberin (TSC2). [50]
Sodium phenylbutyrate DMXLBCQ Approved Sodium phenylbutyrate increases the expression of Tuberin (TSC2). [52]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Tuberin (TSC2). [53]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Tuberin (TSC2). [47]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Tuberin (TSC2). [57]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Tuberin (TSC2). [58]
4-hydroxy-2-nonenal DM2LJFZ Investigative 4-hydroxy-2-nonenal decreases the expression of Tuberin (TSC2). [45]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 PTEN expression and mutations in TSC1, TSC2 and MTOR are associated with response to rapalogs in patients with renal cell carcinoma.Int J Cancer. 2020 Mar 1;146(5):1435-1444. doi: 10.1002/ijc.32579. Epub 2019 Aug 9.
2 LAM study: Effects of lacosamide on behaviour and quality of life in patients with epilepsy.Neurologia (Engl Ed). 2019 Jan-Feb;34(1):1-6. doi: 10.1016/j.nrl.2016.10.007. Epub 2016 Dec 16.
3 Heterozygous Tsc2 (Tsc2+/-) mouse model to study induced renal cancer in response to ionizing radiation at low doses.Carcinogenesis. 2019 Jul 6;40(6):782-790. doi: 10.1093/carcin/bgy172.
4 mTOR-dependent upregulation of xCT blocks melanin synthesis and promotes tumorigenesis.Cell Death Differ. 2019 Oct;26(10):2015-2028. doi: 10.1038/s41418-019-0274-0. Epub 2019 Feb 13.
5 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
6 Lateral Flow Urine Lipoarabinomannan Assay for Diagnosis of Active Tuberculosis in Adults With Human Immunodeficiency Virus Infection: A Prospective Cohort Study.Open Forum Infect Dis. 2019 Mar 15;6(4):ofz132. doi: 10.1093/ofid/ofz132. eCollection 2019 Apr.
7 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
8 Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling.Front Mol Neurosci. 2017 Jun 28;10:201. doi: 10.3389/fnmol.2017.00201. eCollection 2017.
9 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
10 Novel thiosemicarbazones induce high toxicity in estrogen-receptor-positive breast cancer cells (MCF7) and exacerbate cisplatin effectiveness in triple-negative breast (MDA-MB231) and lung adenocarcinoma (A549) cells.Invest New Drugs. 2020 Jun;38(3):558-573. doi: 10.1007/s10637-019-00789-1. Epub 2019 Jun 8.
11 Targeted resequencing of 358 candidate genes for autism spectrum disorder in a Chinese cohort reveals diagnostic potential and genotype-phenotype correlations. Hum Mutat. 2019 Jun;40(6):801-815. doi: 10.1002/humu.23724. Epub 2019 Apr 29.
12 Benign clear cell "sugar" tumor of the lung in a patient with Birt-Hogg-Dub syndrome: a case report.BMC Med Genet. 2016 Nov 21;17(1):85. doi: 10.1186/s12881-016-0350-y.
13 Loss of heterozygosity is detected at chromosomes 1p35-36 (NB), 3p25 (VHL), 16p13 (TSC2/PKD1), and 17p13 (TP53) in microdissected apocrine carcinomas of the breast.Mod Pathol. 1999 Dec;12(12):1083-9.
14 Clinical features distinguish childhood chordoma associated with tuberous sclerosis complex (TSC) from chordoma in the general paediatric population.J Med Genet. 2011 Jul;48(7):444-9. doi: 10.1136/jmg.2010.085092. Epub 2011 Jan 25.
15 Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization.Am J Pathol. 2016 Dec;186(12):3261-3272. doi: 10.1016/j.ajpath.2016.08.013. Epub 2016 Oct 18.
16 Decoding of novel missense TSC2 gene variants using in-silico methods.BMC Med Genet. 2019 Oct 26;20(1):164. doi: 10.1186/s12881-019-0891-y.
17 TSC2 c.1864C>T variant associated with mild cases of tuberous sclerosis complex.Am J Med Genet A. 2017 Mar;173(3):771-775. doi: 10.1002/ajmg.a.38083.
18 Initial experience with endoscopic ultrasonic aspirator in purely neuroendoscopic removal of intraventricular tumors.J Neurosurg Pediatr. 2017 Mar;19(3):325-332. doi: 10.3171/2016.10.PEDS16352. Epub 2017 Jan 13.
19 Tuberous Sclerosis Complex Genotypes and Developmental Phenotype.Pediatr Neurol. 2019 Jul;96:58-63. doi: 10.1016/j.pediatrneurol.2019.03.003. Epub 2019 Mar 13.
20 Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway.J Clin Oncol. 2010 Jan 10;28(2):245-55. doi: 10.1200/JCO.2008.21.5988. Epub 2009 Nov 16.
21 TSC2/PKD1 contiguous gene syndrome, with emphasis on a case with an atypical mild polycystic kidney phenotype and a novel genetic variant.Nefrologia (Engl Ed). 2020 Jan-Feb;40(1):91-98. doi: 10.1016/j.nefro.2019.03.003. Epub 2019 Jun 5.
22 Predominant Activation of JAK/STAT3 Pathway by Interleukin-6 Is Implicated in Hepatocarcinogenesis.Neoplasia. 2015 Jul;17(7):586-97. doi: 10.1016/j.neo.2015.07.005.
23 Management of epilepsy in tuberous sclerosis complex.Expert Rev Neurother. 2008 Mar;8(3):457-67. doi: 10.1586/14737175.8.3.457.
24 Papillary thyroid carcinoma in a boy with familial tuberous sclerosis complex attributable to a TSC2 deletion-a case report.Curr Oncol. 2017 Oct;24(5):e423-e428. doi: 10.3747/co.24.3555. Epub 2017 Oct 25.
25 Deficient TSC1/TSC2-complex suppression of SOX9-osteopontin-AKT signalling cascade constrains tumour growth in tuberous sclerosis complex.Hum Mol Genet. 2017 Jan 15;26(2):407-419. doi: 10.1093/hmg/ddw397.
26 Increased expression of tuberin in human uterine leiomyoma.Fertil Steril. 2011 Apr;95(5):1805-8. doi: 10.1016/j.fertnstert.2010.11.028. Epub 2010 Dec 10.
27 Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration.Neurobiol Dis. 2011 Jul;43(1):113-22. doi: 10.1016/j.nbd.2011.02.014. Epub 2011 Mar 17.
28 Tuberous Sclerosis Complex. 1999 Jul 13 [updated 2021 Dec 9]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
29 Two novel TSC2 mutations in renal epithelioid angiomyolipoma sensitive to everolimus.Cancer Biol Ther. 2020;21(1):4-11. doi: 10.1080/15384047.2019.1665955. Epub 2019 Oct 10.
30 TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication.Gut. 2017 Aug;66(8):1496-1506. doi: 10.1136/gutjnl-2016-312734. Epub 2016 Dec 14.
31 Deep phenotyping of patients with Tuberous Sclerosis Complex and no mutation identified in TSC1 and TSC2.Eur J Med Genet. 2018 Jul;61(7):403-410. doi: 10.1016/j.ejmg.2018.02.005. Epub 2018 Feb 9.
32 mTOR inhibitor reverses autistic-like social deficit behaviours in adult rats with both Tsc2 haploinsufficiency and developmental status epilepticus.Eur Arch Psychiatry Clin Neurosci. 2017 Aug;267(5):455-463. doi: 10.1007/s00406-016-0703-8. Epub 2016 Jun 4.
33 Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex.Hum Mol Genet. 2011 Feb 1;20(3):445-54. doi: 10.1093/hmg/ddq491. Epub 2010 Nov 9.
34 Reduced TSC2 RNA and protein in sporadic astrocytomas and ependymomas.Ann Neurol. 1997 Aug;42(2):230-5. doi: 10.1002/ana.410420215.
35 ERK-TSC2 signalling in constitutively-active HRAS mutant HNSCC cells promotes resistance to PI3K inhibition.Oral Oncol. 2018 Sep;84:95-103. doi: 10.1016/j.oraloncology.2018.07.010. Epub 2018 Jul 27.
36 Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma.BMC Cancer. 2008 Jun 6;8:163. doi: 10.1186/1471-2407-8-163.
37 Severity of manifestations in tuberous sclerosis complex in relation to genotype.Epilepsia. 2014 Jul;55(7):1025-9. doi: 10.1111/epi.12680. Epub 2014 Jun 10.
38 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
39 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
40 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
41 Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):117-27.
42 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
43 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
44 Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes. Clin Diagn Lab Immunol. 2004 Jan;11(1):63-9. doi: 10.1128/cdli.11.1.63-69.2004.
45 Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. Free Radic Biol Med. 2002 Nov 15;33(10):1419-32.
46 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
47 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
48 Multi-level gene expression profiles affected by thymidylate synthase and 5-fluorouracil in colon cancer. BMC Genomics. 2006 Apr 3;7:68. doi: 10.1186/1471-2164-7-68.
49 Rosiglitazone, an Agonist of PPARgamma, Inhibits Non-Small Cell Carcinoma Cell Proliferation In Part through Activation of Tumor Sclerosis Complex-2. PPAR Res. 2007;2007:29632. doi: 10.1155/2007/29632.
50 Aberrant expression of TSC2 gene in the newly diagnosed acute leukemia. Leuk Res. 2009 Jul;33(7):891-7. doi: 10.1016/j.leukres.2009.01.041. Epub 2009 Feb 27.
51 Involvement of C/EBP-related signaling pathway in methamphetamine-induced neuronal autophagy and apoptosis. Toxicol Lett. 2019 Sep 15;312:11-21. doi: 10.1016/j.toxlet.2019.05.003. Epub 2019 May 3.
52 Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins. Physiol Genomics. 2004 Jan 15;16(2):204-11.
53 Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis. FASEB J. 2013 Apr;27(4):1561-71. doi: 10.1096/fj.12-220129. Epub 2013 Jan 4.
54 Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther. 2008 Sep;7(9):2609-20. doi: 10.1158/1535-7163.MCT-07-2400.
55 Modulation of Akt/mTOR signaling overcomes sunitinib resistance in renal and prostate cancer cells. Mol Cancer Ther. 2012 Jul;11(7):1510-7. doi: 10.1158/1535-7163.MCT-11-0907. Epub 2012 Apr 24.
56 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
57 Activation of the mTOR pathway by low levels of xenoestrogens in breast epithelial cells from high-risk women. Carcinogenesis. 2011 Nov;32(11):1724-33. doi: 10.1093/carcin/bgr196. Epub 2011 Sep 1.
58 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.