General Information of Drug Off-Target (DOT) (ID: OT5NCAZN)

DOT Name Serine hydroxymethyltransferase, mitochondrial (SHMT2)
Synonyms SHMT; EC 2.1.2.1; Glycine hydroxymethyltransferase; Serine methylase
Gene Name SHMT2
Related Disease
Hepatitis B virus infection ( )
Acute erythroid leukemia ( )
Anemia ( )
Autism ( )
Digestive system neoplasm ( )
Glioma ( )
Head-neck squamous cell carcinoma ( )
Hepatocellular carcinoma ( )
Intrahepatic cholangiocarcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities ( )
Non-hodgkin lymphoma ( )
Osteoarthritis ( )
Parkinson disease ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Colon cancer ( )
Colon carcinoma ( )
Complex neurodevelopmental disorder ( )
Liver cancer ( )
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Colorectal carcinoma ( )
Gastric cancer ( )
Neuroblastoma ( )
Non-small-cell lung cancer ( )
Stomach cancer ( )
UniProt ID
GLYM_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4PVF; 5V7I; 5X3V; 6DK3; 6H3C; 6M5O; 6QVG; 6QVL; 6R8F; 7BYI; 8AQL; 8FJT; 8FJU; 8QI7; 8SSJ
EC Number
2.1.2.1
Pfam ID
PF00464
Sequence
MLYFSLFWAARPLQRCGQLVRMAIRAQHSNAAQTQTGEANRGWTGQESLSDSDPEMWELL
QREKDRQCRGLELIASENFCSRAALEALGSCLNNKYSEGYPGKRYYGGAEVVDEIELLCQ
RRALEAFDLDPAQWGVNVQPYSGSPANLAVYTALLQPHDRIMGLDLPDGGHLTHGYMSDV
KRISATSIFFESMPYKLNPKTGLIDYNQLALTARLFRPRLIIAGTSAYARLIDYARMREV
CDEVKAHLLADMAHISGLVAAKVIPSPFKHADIVTTTTHKTLRGARSGLIFYRKGVKAVD
PKTGREIPYTFEDRINFAVFPSLQGGPHNHAIAAVAVALKQACTPMFREYSLQVLKNARA
MADALLERGYSLVSGGTDNHLVLVDLRPKGLDGARAERVLELVSITANKNTCPGDRSAIT
PGGLRLGAPALTSRQFREDDFRRVVDFIDEGVNIGLEVKSKTAKLQDFKSFLLKDSETSQ
RLANLRQRVEQFARAFPMPGFDEH
Function
Catalyzes the cleavage of serine to glycine accompanied with the production of 5,10-methylenetetrahydrofolate, an essential intermediate for purine biosynthesis. Serine provides the major source of folate one-carbon in cells by catalyzing the transfer of one carbon from serine to tetrahydrofolate. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism: thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA. Also required for mitochondrial translation by producing 5,10-methylenetetrahydrofolate; 5,10-methylenetetrahydrofolate providing methyl donors to produce the taurinomethyluridine base at the wobble position of some mitochondrial tRNAs. Associates with mitochondrial DNA. In addition to its role in mitochondria, also plays a role in the deubiquitination of target proteins as component of the BRISC complex: required for IFNAR1 deubiquitination by the BRISC complex.
KEGG Pathway
Glycine, serine and threonine metabolism (hsa00260 )
Glyoxylate and dicarboxylate metabolism (hsa00630 )
One carbon pool by folate (hsa00670 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
Biosynthesis of amino acids (hsa01230 )
Biosynthesis of cofactors (hsa01240 )
Antifolate resistance (hsa01523 )
Reactome Pathway
RHOG GTPase cycle (R-HSA-9013408 )
Metabolism of folate and pterines (R-HSA-196757 )
BioCyc Pathway
MetaCyc:HS00049-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

28 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hepatitis B virus infection DISLQ2XY Definitive Altered Expression [1]
Acute erythroid leukemia DISZFC1O Strong Biomarker [2]
Anemia DISTVL0C Strong Biomarker [3]
Autism DISV4V1Z Strong Genetic Variation [4]
Digestive system neoplasm DISPOJCT Strong Altered Expression [5]
Glioma DIS5RPEH Strong Altered Expression [6]
Head-neck squamous cell carcinoma DISF7P24 Strong Genetic Variation [7]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [1]
Intrahepatic cholangiocarcinoma DIS6GOC8 Strong Biomarker [8]
Lung cancer DISCM4YA Strong Genetic Variation [9]
Lung carcinoma DISTR26C Strong Genetic Variation [9]
Neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities DIS75JVJ Strong Autosomal recessive [10]
Non-hodgkin lymphoma DISS2Y8A Strong Genetic Variation [11]
Osteoarthritis DIS05URM Strong Biomarker [12]
Parkinson disease DISQVHKL Strong Genetic Variation [13]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W moderate Biomarker [1]
Colon cancer DISVC52G moderate Biomarker [14]
Colon carcinoma DISJYKUO moderate Biomarker [14]
Complex neurodevelopmental disorder DISB9AFI Moderate Autosomal recessive [15]
Liver cancer DISDE4BI moderate Biomarker [1]
Advanced cancer DISAT1Z9 Limited Biomarker [5]
Breast cancer DIS7DPX1 Limited Biomarker [16]
Breast carcinoma DIS2UE88 Limited Biomarker [16]
Colorectal carcinoma DIS5PYL0 Limited Altered Expression [5]
Gastric cancer DISXGOUK Limited Altered Expression [17]
Neuroblastoma DISVZBI4 Limited Altered Expression [18]
Non-small-cell lung cancer DIS5Y6R9 Limited Biomarker [19]
Stomach cancer DISKIJSX Limited Altered Expression [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [20]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [21]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [22]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [23]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [24]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [25]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [26]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [27]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [28]
Marinol DM70IK5 Approved Marinol affects the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [29]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [30]
DTI-015 DMXZRW0 Approved DTI-015 decreases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [31]
Vitamin C DMXJ7O8 Approved Vitamin C decreases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [32]
Dopamine DMPGUCF Approved Dopamine increases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [33]
Tanespimycin DMNLQHK Phase 2 Tanespimycin decreases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [34]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [36]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [37]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [38]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [39]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [40]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [41]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [42]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Serine hydroxymethyltransferase, mitochondrial (SHMT2). [35]
------------------------------------------------------------------------------------

References

1 Increased Expression of Serine Hydroxymethyltransferase 2 (SHMT2) is a Negative Prognostic Marker in Patients with Hepatocellular Carcinoma and is Associated with Proliferation of HepG2 Cells.Med Sci Monit. 2019 Aug 5;25:5823-5832. doi: 10.12659/MSM.915754.
2 DKC1 is a transcriptional target of GATA1 and drives upregulation of telomerase activity in normal human erythroblasts.Haematologica. 2020 Jun;105(6):1517-1526. doi: 10.3324/haematol.2018.215699. Epub 2019 Aug 14.
3 Disruption of the mouse Shmt2 gene confers embryonic anaemia via foetal liver-specific metabolomic disorders.Sci Rep. 2019 Nov 5;9(1):16054. doi: 10.1038/s41598-019-52372-6.
4 Aberrations in folate metabolic pathway and altered susceptibility to autism.Psychiatr Genet. 2009 Aug;19(4):171-6. doi: 10.1097/YPG.0b013e32832cebd2.
5 High expression of SHMT2 is correlated with tumor progression and predicts poor prognosis in gastrointestinal tumors.Eur Rev Med Pharmacol Sci. 2019 Nov;23(21):9379-9392. doi: 10.26355/eurrev_201911_19431.
6 Mitochondrial serine hydroxymethyltransferase 2 is a potential diagnostic and prognostic biomarker for human glioma.Clin Neurol Neurosurg. 2017 Mar;154:28-33. doi: 10.1016/j.clineuro.2017.01.005. Epub 2017 Jan 16.
7 Association between 11 genetic polymorphisms in folate-metabolising genes and head and neck cancer risk.Eur J Cancer. 2012 Jul;48(10):1525-31. doi: 10.1016/j.ejca.2011.09.025. Epub 2011 Nov 1.
8 SHMT2 Overexpression Predicts Poor Prognosis in Intrahepatic Cholangiocarcinoma.Gastroenterol Res Pract. 2018 Aug 28;2018:4369253. doi: 10.1155/2018/4369253. eCollection 2018.
9 Variants in folate pathway genes as modulators of genetic instability and lung cancer risk.Genes Chromosomes Cancer. 2011 Jan;50(1):1-12. doi: 10.1002/gcc.20826.
10 Impairment of the mitochondrial one-carbon metabolism enzyme SHMT2 causes a novel brain and heart developmental syndrome. Acta Neuropathol. 2020 Dec;140(6):971-975. doi: 10.1007/s00401-020-02223-w. Epub 2020 Oct 5.
11 Polymorphisms in folate-metabolizing genes and risk of non-Hodgkin's lymphoma.Leuk Res. 2011 Apr;35(4):508-15. doi: 10.1016/j.leukres.2010.10.004. Epub 2010 Nov 4.
12 miR-370 and miR-373 regulate the pathogenesis of osteoarthritis by modulating one-carbon metabolism via SHMT-2 and MECP-2, respectively.Aging Cell. 2015 Oct;14(5):826-37. doi: 10.1111/acel.12363. Epub 2015 Jun 24.
13 Comparative analysis of four disease prediction models of Parkinson's disease.Mol Cell Biochem. 2016 Jan;411(1-2):127-34. doi: 10.1007/s11010-015-2574-0. Epub 2015 Oct 5.
14 Long noncoding RNA LINC01234 promotes serine hydroxymethyltransferase 2 expression and proliferation by competitively binding miR-642a-5p in colon cancer.Cell Death Dis. 2019 Feb 12;10(2):137. doi: 10.1038/s41419-019-1352-4.
15 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
16 Proteomic profiling of breast cancer metabolism identifies SHMT2 and ASCT2 as prognostic factors.Breast Cancer Res. 2017 Oct 11;19(1):112. doi: 10.1186/s13058-017-0905-7.
17 High Expression of Serine Hydroxymethyltransferase 2 Indicates Poor Prognosis of Gastric Cancer Patients.Med Sci Monit. 2019 Oct 3;25:7430-7438. doi: 10.12659/MSM.917435.
18 Serine catabolism regulates mitochondrial redox control during hypoxia.Cancer Discov. 2014 Dec;4(12):1406-17. doi: 10.1158/2159-8290.CD-14-0250. Epub 2014 Sep 3.
19 NRF2 regulates serine biosynthesis in non-small cell lung cancer.Nat Genet. 2015 Dec;47(12):1475-81. doi: 10.1038/ng.3421. Epub 2015 Oct 19.
20 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
21 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
22 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
23 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
24 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
25 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
26 Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett. 2005 Mar 14;579(7):1732-40.
27 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
28 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
29 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
30 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
31 Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression. J Neurooncol. 2005 Jul;73(3):189-98.
32 Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression. PLoS One. 2009;4(2):e4409.
33 Mitochondrial proteomics investigation of a cellular model of impaired dopamine homeostasis, an early step in Parkinson's disease pathogenesis. Mol Biosyst. 2014 Jun;10(6):1332-44.
34 Impact of Heat Shock Protein 90 Inhibition on the Proteomic Profile of Lung Adenocarcinoma as Measured by Two-Dimensional Electrophoresis Coupled with Mass Spectrometry. Cells. 2019 Jul 31;8(8):806. doi: 10.3390/cells8080806.
35 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
36 Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib. Blood. 2015 Sep 24;126(13):1565-74.
37 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
38 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
39 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
40 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
41 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
42 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.