General Information of Drug Off-Target (DOT) (ID: OTAP5AT3)

DOT Name Receptor-type tyrosine-protein phosphatase kappa (PTPRK)
Synonyms Protein-tyrosine phosphatase kappa; R-PTP-kappa; EC 3.1.3.48
Gene Name PTPRK
Related Disease
Advanced cancer ( )
Central nervous system lymphoma ( )
Coeliac disease ( )
Colorectal carcinoma ( )
Head-neck squamous cell carcinoma ( )
Melanoma ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Osteoarthritis ( )
Prostate neoplasm ( )
Rheumatoid arthritis ( )
T-cell lymphoma ( )
Lung cancer ( )
Asthma ( )
Breast cancer ( )
Breast carcinoma ( )
Prostate cancer ( )
Prostate carcinoma ( )
UniProt ID
PTPRK_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2C7S; 8A1F
EC Number
3.1.3.48
Pfam ID
PF00041 ; PF07679 ; PF00629 ; PF00102
Sequence
MDTTAAAALPAFVALLLLSPWPLLGSAQGQFSAGGCTFDDGPGACDYHQDLYDDFEWVHV
SAQEPHYLPPEMPQGSYMIVDSSDHDPGEKARLQLPTMKENDTHCIDFSYLLYSQKGLNP
GTLNILVRVNKGPLANPIWNVTGFTGRDWLRAELAVSTFWPNEYQVIFEAEVSGGRSGYI
AIDDIQVLSYPCDKSPHFLRLGDVEVNAGQNATFQCIATGRDAVHNKLWLQRRNGEDIPV
AQTKNINHRRFAASFRLQEVTKTDQDLYRCVTQSERGSGVSNFAQLIVREPPRPIAPPQL
LGVGPTYLLIQLNANSIIGDGPIILKEVEYRMTSGSWTETHAVNAPTYKLWHLDPDTEYE
IRVLLTRPGEGGTGLPGPPLITRTKCAEPMRTPKTLKIAEIQARRIAVDWESLGYNITRC
HTFNVTICYHYFRGHNESKADCLDMDPKAPQHVVNHLPPYTNVSLKMILTNPEGRKESEE
TIIQTDEDVPGPVPVKSLQGTSFENKIFLNWKEPLDPNGIITQYEISYSSIRSFDPAVPV
AGPPQTVSNLWNSTHHVFMHLHPGTTYQFFIRASTVKGFGPATAINVTTNISAPTLPDYE
GVDASLNETATTITVLLRPAQAKGAPISAYQIVVEELHPHRTKREAGAMECYQVPVTYQN
AMSGGAPYYFAAELPPGNLPEPAPFTVGDNRTYQGFWNPPLAPRKGYNIYFQAMSSVEKE
TKTQCVRIATKAATEEPEVIPDPAKQTDRVVKIAGISAGILVFILLLLVVILIVKKSKLA
KKRKDAMGNTRQEMTHMVNAMDRSYADQSTLHAEDPLSITFMDQHNFSPRYENHSATAES
SRLLDVPRYLCEGTESPYQTGQLHPAIRVADLLQHINLMKTSDSYGFKEEYESFFEGQSA
SWDVAKKDQNRAKNRYGNIIAYDHSRVILQPVEDDPSSDYINANYIDGYQRPSHYIATQG
PVHETVYDFWRMIWQEQSACIVMVTNLVEVGRVKCYKYWPDDTEVYGDFKVTCVEMEPLA
EYVVRTFTLERRGYNEIREVKQFHFTGWPDHGVPYHATGLLSFIRRVKLSNPPSAGPIVV
HCSAGAGRTGCYIVIDIMLDMAEREGVVDIYNCVKALRSRRINMVQTEEQYIFIHDAILE
ACLCGETAIPVCEFKAAYFDMIRIDSQTNSSHLKDEFQTLNSVTPRLQAEDCSIACLPRN
HDKNRFMDMLPPDRCLPFLITIDGESSNYINAALMDSYRQPAAFIVTQYPLPNTVKDFWR
LVYDYGCTSIVMLNEVDLSQGCPQYWPEEGMLRYGPIQVECMSCSMDCDVINRIFRICNL
TRPQEGYLMVQQFQYLGWASHREVPGSKRSFLKLILQVEKWQEECEEGEGRTIIHCLNGG
GRSGMFCAIGIVVEMVKRQNVVDVFHAVKTLRNSKPNMVEAPEQYRFCYDVALEYLESS
Function
Regulation of processes involving cell contact and adhesion such as growth control, tumor invasion, and metastasis. Negative regulator of EGFR signaling pathway. Forms complexes with beta-catenin and gamma-catenin/plakoglobin. Beta-catenin may be a substrate for the catalytic activity of PTPRK/PTP-kappa.
Tissue Specificity High levels in lung, brain and colon; less in liver, pancreas, stomach, kidney, placenta and mammary carcinoma.
Reactome Pathway
EGFR downregulation (R-HSA-182971 )

Molecular Interaction Atlas (MIA) of This DOT

18 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Genetic Variation [1]
Central nervous system lymphoma DISBYQTA Strong Biomarker [2]
Coeliac disease DISIY60C Strong Genetic Variation [3]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [4]
Head-neck squamous cell carcinoma DISF7P24 Strong Genetic Variation [1]
Melanoma DIS1RRCY Strong Biomarker [5]
Neoplasm DISZKGEW Strong Biomarker [6]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [7]
Osteoarthritis DIS05URM Strong Altered Expression [8]
Prostate neoplasm DISHDKGQ Strong Biomarker [9]
Rheumatoid arthritis DISTSB4J Strong Biomarker [8]
T-cell lymphoma DISSXRTQ Strong Posttranslational Modification [10]
Lung cancer DISCM4YA moderate Genetic Variation [11]
Asthma DISW9QNS Limited Genetic Variation [12]
Breast cancer DIS7DPX1 Limited Altered Expression [13]
Breast carcinoma DIS2UE88 Limited Altered Expression [13]
Prostate cancer DISF190Y Limited Altered Expression [14]
Prostate carcinoma DISMJPLE Limited Altered Expression [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Receptor-type tyrosine-protein phosphatase kappa (PTPRK) affects the response to substance of Fluorouracil. [39]
Topotecan DMP6G8T Approved Receptor-type tyrosine-protein phosphatase kappa (PTPRK) affects the response to substance of Topotecan. [39]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [15]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [16]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [17]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [18]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [19]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [20]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [21]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [22]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [23]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [24]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [26]
Mifepristone DMGZQEF Approved Mifepristone increases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [27]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [28]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [29]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [31]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [32]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [33]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [34]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [35]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [36]
GW7647 DM9RD0C Investigative GW7647 decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [37]
Taurine DMVW7N3 Investigative Taurine decreases the expression of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Decitabine DMQL8XJ Approved Decitabine affects the methylation of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [25]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [30]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Receptor-type tyrosine-protein phosphatase kappa (PTPRK). [30]
------------------------------------------------------------------------------------

References

1 AlloDriver: a method for the identification and analysis of cancer driver targets.Nucleic Acids Res. 2019 Jul 2;47(W1):W315-W321. doi: 10.1093/nar/gkz350.
2 Novel tumor suppressor loci on 6q22-23 in primary central nervous system lymphomas.Cancer Res. 2003 Feb 15;63(4):737-41.
3 Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease.Nat Genet. 2011 Nov 6;43(12):1193-201. doi: 10.1038/ng.998.
4 Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness.Oncogene. 2015 Sep 3;34(36):4692-701. doi: 10.1038/onc.2014.417. Epub 2014 Dec 22.
5 Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation.Oncotarget. 2012 Apr;3(4):399-413. doi: 10.18632/oncotarget.473.
6 The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion.Elife. 2019 Mar 29;8:e44597. doi: 10.7554/eLife.44597.
7 MiR-1260b promotes the migration and invasion in non-small cell lung cancer via targeting PTPRK.Pathol Res Pract. 2018 May;214(5):776-783. doi: 10.1016/j.prp.2018.02.002. Epub 2018 Feb 14.
8 TGF responsive tyrosine phosphatase promotes rheumatoid synovial fibroblast invasiveness.Ann Rheum Dis. 2016 Jan;75(1):295-302. doi: 10.1136/annrheumdis-2014-205790. Epub 2014 Nov 6.
9 Identification of genes potentially involved in the acquisition of androgen-independent and metastatic tumor growth in an autochthonous genetically engineered mouse prostate cancer model.Prostate. 2007 Jan 1;67(1):83-106. doi: 10.1002/pros.20505.
10 Receptor-type tyrosine-protein phosphatase directly targets STAT3 activation for tumor suppression in nasal NK/T-cell lymphoma.Blood. 2015 Mar 5;125(10):1589-600. doi: 10.1182/blood-2014-07-588970. Epub 2015 Jan 22.
11 RSPO fusion transcripts in colorectal cancer in Japanese population.Mol Biol Rep. 2014 Aug;41(8):5375-84. doi: 10.1007/s11033-014-3409-x. Epub 2014 May 22.
12 Genetic Architectures of Childhood- and Adult-Onset Asthma Are Partly Distinct.Am J Hum Genet. 2019 Apr 4;104(4):665-684. doi: 10.1016/j.ajhg.2019.02.022. Epub 2019 Mar 28.
13 Protein tyrosine phosphatase kappa (PTPRK) is a negative regulator of adhesion and invasion of breast cancer cells, and associates with poor prognosis of breast cancer.J Cancer Res Clin Oncol. 2013 Jul;139(7):1129-39. doi: 10.1007/s00432-013-1421-5. Epub 2013 Apr 4.
14 Receptor-like protein tyrosine phosphatase negatively regulates the apoptosis of prostate cancer cells via the JNK pathway.Int J Oncol. 2013 Nov;43(5):1560-8. doi: 10.3892/ijo.2013.2082. Epub 2013 Aug 29.
15 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
16 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
17 Effect of all-trans retinoic acid on sodium/iodide symporter expression, radioiodine uptake and gene expression profiles in a human anaplastic thyroid carcinoma cell line. Nucl Med Biol. 2006 Oct;33(7):875-82. doi: 10.1016/j.nucmedbio.2006.07.004.
18 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
19 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
20 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
21 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
22 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
23 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
24 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
25 Ornithine decarboxylase antizyme upregulates DNA-dependent protein kinase and enhances the nonhomologous end-joining repair of DNA double-strand breaks in human oral cancer cells. Biochemistry. 2007 Aug 7;46(31):8920-32. doi: 10.1021/bi7000328. Epub 2007 Jul 14.
26 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
27 Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007 Sep;13(9):641-54.
28 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
29 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
30 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
31 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
32 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
33 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
34 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
35 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
36 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
37 Identifying qualitative differences in PPAR signaling networks in human and rat hepatocytes and their significance for next generation chemical risk assessment methods. Toxicol In Vitro. 2020 Apr;64:104463. doi: 10.1016/j.tiv.2019.02.017. Epub 2019 Oct 15.
38 Taurine-responsive genes related to signal transduction as identified by cDNA microarray analyses of HepG2 cells. J Med Food. 2006 Spring;9(1):33-41. doi: 10.1089/jmf.2006.9.33.
39 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.