General Information of Drug Off-Target (DOT) (ID: OTKKT03T)

DOT Name Methylcytosine dioxygenase TET2 (TET2)
Synonyms EC 1.14.11.80
Gene Name TET2
Related Disease
Promyelocytic leukaemia ( )
Angioimmunoblastic T-cell Lymphoma ( )
Breast cancer ( )
Breast carcinoma ( )
Chronic myelomonocytic leukaemia ( )
Chronic myelomonocytic leukemia ( )
Chronic obstructive pulmonary disease ( )
Clear cell renal carcinoma ( )
Colorectal adenocarcinoma ( )
Colorectal adenoma ( )
Colorectal cancer ( )
Colorectal cancer, susceptibility to, 1 ( )
Colorectal cancer, susceptibility to, 10 ( )
Colorectal cancer, susceptibility to, 12 ( )
Colorectal neoplasm ( )
Congestive heart failure ( )
Essential thrombocythemia ( )
High blood pressure ( )
Immunodeficiency 75 ( )
Inflammatory bowel disease ( )
Mastocytosis ( )
Melanoma ( )
Multiple sclerosis ( )
Neoplasm ( )
Papillary renal cell carcinoma ( )
Renal cell carcinoma ( )
Schizophrenia ( )
Sezary syndrome ( )
Systemic mastocytosis ( )
T-cell lymphoma ( )
Colorectal carcinoma ( )
Pulmonary arterial hypertension ( )
Ulcerative colitis ( )
Acute monocytic leukemia ( )
Anemia ( )
Childhood myelodysplastic syndrome ( )
Colon cancer ( )
Haematological malignancy ( )
Leukemia ( )
Myelofibrosis ( )
Non-hodgkin lymphoma ( )
Primary cutaneous peripheral T-cell lymphoma not otherwise specified ( )
Prostate neoplasm ( )
UniProt ID
TET2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4NM6; 5D9Y; 5DEU; 7NE3; 7NE6
EC Number
1.14.11.80
Pfam ID
PF12851
Sequence
MEQDRTNHVEGNRLSPFLIPSPPICQTEPLATKLQNGSPLPERAHPEVNGDTKWHSFKSY
YGIPCMKGSQNSRVSPDFTQESRGYSKCLQNGGIKRTVSEPSLSGLLQIKKLKQDQKANG
ERRNFGVSQERNPGESSQPNVSDLSDKKESVSSVAQENAVKDFTSFSTHNCSGPENPELQ
ILNEQEGKSANYHDKNIVLLKNKAVLMPNGATVSASSVEHTHGELLEKTLSQYYPDCVSI
AVQKTTSHINAINSQATNELSCEITHPSHTSGQINSAQTSNSELPPKPAAVVSEACDADD
ADNASKLAAMLNTCSFQKPEQLQQQKSVFEICPSPAENNIQGTTKLASGEEFCSGSSSNL
QAPGGSSERYLKQNEMNGAYFKQSSVFTKDSFSATTTPPPPSQLLLSPPPPLPQVPQLPS
EGKSTLNGGVLEEHHHYPNQSNTTLLREVKIEGKPEAPPSQSPNPSTHVCSPSPMLSERP
QNNCVNRNDIQTAGTMTVPLCSEKTRPMSEHLKHNPPIFGSSGELQDNCQQLMRNKEQEI
LKGRDKEQTRDLVPPTQHYLKPGWIELKAPRFHQAESHLKRNEASLPSILQYQPNLSNQM
TSKQYTGNSNMPGGLPRQAYTQKTTQLEHKSQMYQVEMNQGQSQGTVDQHLQFQKPSHQV
HFSKTDHLPKAHVQSLCGTRFHFQQRADSQTEKLMSPVLKQHLNQQASETEPFSNSHLLQ
HKPHKQAAQTQPSQSSHLPQNQQQQQKLQIKNKEEILQTFPHPQSNNDQQREGSFFGQTK
VEECFHGENQYSKSSEFETHNVQMGLEEVQNINRRNSPYSQTMKSSACKIQVSCSNNTHL
VSENKEQTTHPELFAGNKTQNLHHMQYFPNNVIPKQDLLHRCFQEQEQKSQQASVLQGYK
NRNQDMSGQQAAQLAQQRYLIHNHANVFPVPDQGGSHTQTPPQKDTQKHAALRWHLLQKQ
EQQQTQQPQTESCHSQMHRPIKVEPGCKPHACMHTAPPENKTWKKVTKQENPPASCDNVQ
QKSIIETMEQHLKQFHAKSLFDHKALTLKSQKQVKVEMSGPVTVLTRQTTAAELDSHTPA
LEQQTTSSEKTPTKRTAASVLNNFIESPSKLLDTPIKNLLDTPVKTQYDFPSCRCVEQII
EKDEGPFYTHLGAGPNVAAIREIMEERFGQKGKAIRIERVIYTGKEGKSSQGCPIAKWVV
RRSSSEEKLLCLVRERAGHTCEAAVIVILILVWEGIPLSLADKLYSELTETLRKYGTLTN
RRCALNEERTCACQGLDPETCGASFSFGCSWSMYYNGCKFARSKIPRKFKLLGDDPKEEE
KLESHLQNLSTLMAPTYKKLAPDAYNNQIEYEHRAPECRLGLKEGRPFSGVTACLDFCAH
AHRDLHNMQNGSTLVCTLTREDNREFGGKPEDEQLHVLPLYKVSDVDEFGSVEAQEEKKR
SGAIQVLSSFRRKVRMLAEPVKTCRQRKLEAKKAAAEKLSSLENSSNKNEKEKSAPSRTK
QTENASQAKQLAELLRLSGPVMQQSQQPQPLQKQPPQPQQQQRPQQQQPHHPQTESVNSY
SASGSTNPYMRRPNPVSPYPNSSHTSDIYGSTSPMNFYSTSSQAAGSYLNSSNPMNPYPG
LLNQNTQYPSYQCNGNLSVDNCSPYLGSYSPQSQPMDLYRYPSQDPLSKLSLPPIHTLYQ
PRFGNSQSFTSKYLGYGNQNMQGDGFSSCTIRPNVHHVGKLPPYPTHEMDGHFMGATSRL
PPNLSNPNMDYKNGEHHSPSHIIHNYSAAPGMFNSSLHALHLQNKENDMLSHTANGLSKM
LPALNHDRTACVQGGLHKLSDANGQEKQPLALVQGVASGAEDNDEVWSDSEQSFLDPDIG
GVAVAPTHGSILIECAKRELHATTPLKNPNRNHPTRISLVFYQHKSMNEPKHGLALWEAK
MAEKAREKEEECEKYGPDYVPQKSHGKKVKREPAEPHETSEPTYLRFIKSLAERTMSVTT
DSTVTTSPYAFTRVTGPYNRYI
Function
Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT.
Tissue Specificity
Broadly expressed. Highly expressed in hematopoietic cells; highest expression observed in granulocytes. Expression is reduced in granulocytes from peripheral blood of patients affected by myelodysplastic syndromes.
Reactome Pathway
Specification of primordial germ cells (R-HSA-9827857 )
TET1,2,3 and TDG demethylate DNA (R-HSA-5221030 )

Molecular Interaction Atlas (MIA) of This DOT

43 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Promyelocytic leukaemia DISYGG13 Definitive Genetic Variation [1]
Angioimmunoblastic T-cell Lymphoma DISZPFTL Strong Genetic Variation [2]
Breast cancer DIS7DPX1 Strong Altered Expression [3]
Breast carcinoma DIS2UE88 Strong Altered Expression [3]
Chronic myelomonocytic leukaemia DISDN5P7 Strong Biomarker [4]
Chronic myelomonocytic leukemia DISIL8UR Strong Biomarker [5]
Chronic obstructive pulmonary disease DISQCIRF Strong Genetic Variation [6]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [7]
Colorectal adenocarcinoma DISPQOUB Strong Genetic Variation [8]
Colorectal adenoma DISTSVHM Strong Genetic Variation [8]
Colorectal cancer DISNH7P9 Strong Genetic Variation [8]
Colorectal cancer, susceptibility to, 1 DISZ794C Strong Genetic Variation [8]
Colorectal cancer, susceptibility to, 10 DISQXMYM Strong Genetic Variation [8]
Colorectal cancer, susceptibility to, 12 DIS4FXJX Strong Genetic Variation [8]
Colorectal neoplasm DISR1UCN Strong Genetic Variation [8]
Congestive heart failure DIS32MEA Strong Genetic Variation [9]
Essential thrombocythemia DISWWK11 Strong Genetic Variation [10]
High blood pressure DISY2OHH Strong Genetic Variation [9]
Immunodeficiency 75 DISDVWSC Strong Autosomal recessive [11]
Inflammatory bowel disease DISGN23E Strong Biomarker [12]
Mastocytosis DIS1TEE0 Strong Genetic Variation [13]
Melanoma DIS1RRCY Strong Biomarker [14]
Multiple sclerosis DISB2WZI Strong Altered Expression [15]
Neoplasm DISZKGEW Strong Biomarker [16]
Papillary renal cell carcinoma DIS25HBV Strong Biomarker [7]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [7]
Schizophrenia DISSRV2N Strong Genetic Variation [17]
Sezary syndrome DISFMTC7 Strong Biomarker [18]
Systemic mastocytosis DISNQ2OY Strong Genetic Variation [19]
T-cell lymphoma DISSXRTQ Strong Biomarker [20]
Colorectal carcinoma DIS5PYL0 moderate Genetic Variation [8]
Pulmonary arterial hypertension DISP8ZX5 Moderate Autosomal dominant [21]
Ulcerative colitis DIS8K27O moderate Genetic Variation [22]
Acute monocytic leukemia DIS28NEL Limited Biomarker [23]
Anemia DISTVL0C Limited Genetic Variation [24]
Childhood myelodysplastic syndrome DISMN80I Limited Genetic Variation [25]
Colon cancer DISVC52G Limited Biomarker [26]
Haematological malignancy DISCDP7W Limited Biomarker [27]
Leukemia DISNAKFL Limited Genetic Variation [28]
Myelofibrosis DISIMP21 Limited Genetic Variation [29]
Non-hodgkin lymphoma DISS2Y8A Limited Genetic Variation [30]
Primary cutaneous peripheral T-cell lymphoma not otherwise specified DIS5OHQF Limited Genetic Variation [31]
Prostate neoplasm DISHDKGQ Limited Altered Expression [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 43 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Methylcytosine dioxygenase TET2 (TET2). [33]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Methylcytosine dioxygenase TET2 (TET2). [34]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Methylcytosine dioxygenase TET2 (TET2). [35]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Methylcytosine dioxygenase TET2 (TET2). [36]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Methylcytosine dioxygenase TET2 (TET2). [38]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Methylcytosine dioxygenase TET2 (TET2). [39]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Methylcytosine dioxygenase TET2 (TET2). [40]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Methylcytosine dioxygenase TET2 (TET2). [39]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Methylcytosine dioxygenase TET2 (TET2). [42]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Methylcytosine dioxygenase TET2 (TET2). [44]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Methylcytosine dioxygenase TET2 (TET2). [36]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Methylcytosine dioxygenase TET2 (TET2). [45]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Methylcytosine dioxygenase TET2 (TET2). [46]
Dorsomorphin DMKYXJW Investigative Dorsomorphin decreases the expression of Methylcytosine dioxygenase TET2 (TET2). [47]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Methylcytosine dioxygenase TET2 (TET2). [37]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Methylcytosine dioxygenase TET2 (TET2). [41]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Methylcytosine dioxygenase TET2 (TET2). [43]
------------------------------------------------------------------------------------

References

1 PML Recruits TET2 to Regulate DNA Modification and Cell Proliferation in Response to Chemotherapeutic Agent.Cancer Res. 2018 May 15;78(10):2475-2489. doi: 10.1158/0008-5472.CAN-17-3091. Epub 2018 May 7.
2 The pathological features of angioimmunoblastic T-cell lymphomas with IDH2(R172) mutations.Mod Pathol. 2019 Jul;32(8):1123-1134. doi: 10.1038/s41379-019-0254-4. Epub 2019 Apr 5.
3 Retinoic acid directs breast cancer cell state changes through regulation of TET2-PKC pathway.Oncogene. 2017 Jun 1;36(22):3193-3206. doi: 10.1038/onc.2016.467. Epub 2017 Feb 20.
4 Myeloid neoplasms with features intermediate between primary myelofibrosis and chronic myelomonocytic leukemia.Mod Pathol. 2018 Mar;31(3):429-441. doi: 10.1038/modpathol.2017.148. Epub 2017 Dec 1.
5 Comprehensive mutation profiling and mRNA expression analysis in atypical chronic myeloid leukemia in comparison with chronic myelomonocytic leukemia.Cancer Med. 2019 Feb;8(2):742-750. doi: 10.1002/cam4.1946. Epub 2019 Jan 11.
6 Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations.Nat Genet. 2019 Mar;51(3):494-505. doi: 10.1038/s41588-018-0342-2. Epub 2019 Feb 25.
7 Integrated molecular analysis of clear-cell renal cell carcinoma.Nat Genet. 2013 Aug;45(8):860-7. doi: 10.1038/ng.2699. Epub 2013 Jun 24.
8 Discovery of common and rare genetic risk variants for colorectal cancer.Nat Genet. 2019 Jan;51(1):76-87. doi: 10.1038/s41588-018-0286-6. Epub 2018 Dec 3.
9 Association of Mutations Contributing to Clonal Hematopoiesis With Prognosis in Chronic Ischemic Heart Failure.JAMA Cardiol. 2019 Jan 1;4(1):25-33. doi: 10.1001/jamacardio.2018.3965.
10 Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera.Br J Haematol. 2016 Nov;175(3):419-426. doi: 10.1111/bjh.14269. Epub 2016 Jul 22.
11 Germline TET2 loss of function causes childhood immunodeficiency and lymphoma. Blood. 2020 Aug 27;136(9):1055-1066. doi: 10.1182/blood.2020005844.
12 I_MDS: an inflammatory bowel disease molecular activity score to classify patients with differing disease-driving pathways and therapeutic response to anti-TNF treatment.PLoS Comput Biol. 2019 Apr 30;15(4):e1006951. doi: 10.1371/journal.pcbi.1006951. eCollection 2019 Apr.
13 Mutational Hotspot of TET2, IDH1, IDH2, SRSF2, SF3B1, KRAS, and NRAS from Human Systemic Mastocytosis Are Not Conserved in Canine Mast Cell Tumors.PLoS One. 2015 Nov 12;10(11):e0142450. doi: 10.1371/journal.pone.0142450. eCollection 2015.
14 TET2-Dependent Hydroxymethylome Plasticity Reduces Melanoma Initiation and Progression.Cancer Res. 2019 Feb 1;79(3):482-494. doi: 10.1158/0008-5472.CAN-18-1214. Epub 2018 Dec 11.
15 TET2 gene expression and 5-hydroxymethylcytosine level in multiple sclerosis peripheral blood cells.Biochim Biophys Acta. 2014 Jul;1842(7):1130-6. doi: 10.1016/j.bbadis.2014.04.010. Epub 2014 Apr 13.
16 Prognostic impact of circulating tumor DNA status post-allogeneic hematopoietic stem cell transplantation in AML and MDS.Blood. 2019 Jun 20;133(25):2682-2695. doi: 10.1182/blood-2018-10-880690. Epub 2019 Apr 1.
17 Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways.Am J Hum Genet. 2019 Aug 1;105(2):334-350. doi: 10.1016/j.ajhg.2019.06.012.
18 The mutational landscape of cutaneous T cell lymphoma and Szary syndrome.Nat Genet. 2015 Dec;47(12):1465-70. doi: 10.1038/ng.3442. Epub 2015 Nov 9.
19 Next-generation sequencing in systemic mastocytosis: Derivation of a mutation-augmented clinical prognostic model for survival.Am J Hematol. 2016 Sep;91(9):888-93. doi: 10.1002/ajh.24426. Epub 2016 Jun 20.
20 Paradoxical association of TET loss of function with genome-wide DNA hypomethylation.Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16933-16942. doi: 10.1073/pnas.1903059116. Epub 2019 Aug 1.
21 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
22 Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations.Nat Genet. 2015 Sep;47(9):979-986. doi: 10.1038/ng.3359. Epub 2015 Jul 20.
23 Clonal dynamics in a case of acute monoblastic leukemia that later developed myeloproliferative neoplasm.Int J Hematol. 2018 Aug;108(2):213-217. doi: 10.1007/s12185-018-2419-1. Epub 2018 Feb 7.
24 A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing.Mol Cell Biol. 2015 Mar;35(5):789-804. doi: 10.1128/MCB.00971-14. Epub 2014 Dec 15.
25 Detection of Novel t(12;17)(p12;p13) in Relapsed Refractory Acute Myeloid Leukemia by Anchored Multiplex PCR(AMP)-based Next-Generation Sequencing.Appl Immunohistochem Mol Morphol. 2019 Mar;27(3):e28-e31. doi: 10.1097/PAI.0000000000000477.
26 p53-dependent autophagic degradation of TET2 modulates cancer therapeutic resistance.Oncogene. 2019 Mar;38(11):1905-1919. doi: 10.1038/s41388-018-0524-5. Epub 2018 Nov 2.
27 TET2 Function in Hematopoietic Malignancies, Immune Regulation, and DNA Repair.Front Oncol. 2019 Apr 2;9:210. doi: 10.3389/fonc.2019.00210. eCollection 2019.
28 Acute myeloid leukaemia: recent data on prognostic gene mutations, in relation to stratified therapies for elderly patients.J BUON. 2019 Jul-Aug;24(4):1326-1339.
29 Next-generation sequencing with a 54-gene panel identified unique mutational profile and prognostic markers in Chinese patients with myelofibrosis.Ann Hematol. 2019 Apr;98(4):869-879. doi: 10.1007/s00277-018-3563-7. Epub 2018 Dec 4.
30 Pleiotropy of cancer susceptibility variants on the risk of non-Hodgkin lymphoma: the PAGE consortium.PLoS One. 2014 Mar 5;9(3):e89791. doi: 10.1371/journal.pone.0089791. eCollection 2014.
31 Identification of cell-type-specific mutations in nodal T-cell lymphomas.Blood Cancer J. 2017 Jan 6;7(1):e516. doi: 10.1038/bcj.2016.122.
32 TET2 binds the androgen receptor and loss is associated with prostate cancer.Oncogene. 2017 Apr;36(15):2172-2183. doi: 10.1038/onc.2016.376. Epub 2016 Nov 7.
33 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
34 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
35 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
36 Role of TET Dioxygenases and DNA Hydroxymethylation in Bisphenols-Stimulated Proliferation of Breast Cancer Cells. Environ Health Perspect. 2020 Feb;128(2):27008. doi: 10.1289/EHP5862. Epub 2020 Feb 27.
37 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
38 Oxidative stress-induced TET1 upregulation mediates active DNA demethylation in human gastric epithelial cells. J Toxicol Sci. 2023;48(5):273-283. doi: 10.2131/jts.48.273.
39 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
40 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
41 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
42 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
43 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
44 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
45 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
46 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
47 Compound C induces autophagy and apoptosis in parental and hydroquinone-selected malignant leukemia cells through the ROS/p38 MAPK/AMPK/TET2/FOXP3 axis. Cell Biol Toxicol. 2020 Aug;36(4):315-331. doi: 10.1007/s10565-019-09495-3. Epub 2020 Jan 3.