General Information of Disease (ID: DISP8ZX5)

Disease Name Pulmonary arterial hypertension
Synonyms PPH; idiopathic pulmonary hypertension; PAH with overt features of venous/capillaries involvement; PVOD/PCH; PAH; pulmonary arterial hypertension
Disease Class BB01: Pulmonary hypertension
Definition
Pulmonary arterial hypertension (PAH) is a group of diseases characterized by mean pulmonary artery pressure >20 mmHg and elevated pulmonary arterial resistance leading to right heart failure. PAH is progressive and potentially fatal. PAH may be idiopathic and/ or familial, have overt features of venous/capillary involvement (pulmonary veno-occlusive disease, PVOD/pulmonary capillary hemangiomatosis, PCH), induced by drug or toxin (drug-or toxin-induced PAH), or associated with other diseases like congenital heart disease, connective tissue disease, HIV, schistosomiasis, portal hypertension (PAH associated with other disease).
Disease Hierarchy
DIS1RSP5: Pulmonary hypertension
DISP8ZX5: Pulmonary arterial hypertension
ICD Code
ICD-11
ICD-11: BB01.0
ICD-9
ICD-9: 416
Expand ICD-11
'BB01.0
Expand ICD-10
'I26.9; 'I27; 'I27.0; 'I27.2; 'I78; 'I78.8
Expand ICD-9
416
Disease Identifiers
MONDO ID
MONDO_0015924
UMLS CUI
C2973725
MedGen ID
425404
HPO ID
HP:0002092
Orphanet ID
182090
SNOMED CT ID
11399002

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 6 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Ambrisentan DMD1QXW Approved Small molecular drug [1]
Bosentan DMIOGBU Approved Small molecular drug [2]
Iloprost DMVPZBE Approved Small molecular drug [3]
Riociguat DMXBLMP Approved Small molecular drug [4]
Selexipag DMAHSU0 Approved Small molecular drug [5]
Treprostinil DMTIQF3 Approved Small molecular drug [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
This Disease is Treated as An Indication in 33 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Bardoxolone methyl DMODA2X Phase 3 Small molecular drug [7]
Beraprost 314d DMU2G9T Phase 3 NA [8]
esuberaprost DMXLGED Phase 3 Small molecular drug [7]
INOpulse DMLLNGO Phase 3 NA [8]
LIQ861 DMFYKYG Phase 3 NA [8]
RemUnity DMGE7J0 Phase 3 NA [8]
Tysuberprost DMFJHDC Phase 3 NA [8]
Treprostinil palmitil DMSQ6U6 Phase 2/3 Small molecule [9]
2-Methoxyestradiol DMGBPME Phase 2 Small molecular drug [10]
ABI-009 DMQ6KZM Phase 2 NA [8]
BQ-123 DM0MO8I Phase 2 Small molecular drug [11]
Cicletanine DMGTZLW Phase 2 Small molecular drug [12]
CXA10 DMM7Z6K Phase 2 Small molecular drug [13]
GeNOsyl DMTMPSB Phase 2 NA [8]
GS-4997 DMNABMU Phase 2 NA [7]
GSK2586881 DMU5EVR Phase 2 NA [8]
H-1152 DM8XH3S Phase 2 Small molecular drug [14]
JTT-251 DM1945H Phase 2 NA [15]
LTP001 DMW1HI5 Phase 2 NA [16]
MK-5475 DMIIZ4R Phase 2 Small molecule [17]
PB1046 DM8MJ3F Phase 2 Recombinant protein [18]
PRX-08066 DMR7H2V Phase 2 Small molecular drug [19]
Ralinepag DM7G4Y9 Phase 2 NA [8]
RemoSynch DMKHWHE Phase 2 NA [8]
SPI-026 DMH9X10 Phase 2 NA [7]
Terguride DMZNFPG Phase 2 Small molecular drug [20]
Vasoactive intestinal peptide DMRJ5LP Phase 2 Small molecular drug [21]
CAM2043 DMOSNCW Phase 1/2 NA [8]
Nitric oxide synthase gene therapy DMQ0GOE Phase 1/2 NA [22]
Brilaroxazine DM90J3J Phase 1 Small molecule [23]
GSK-2256098 DMR24MI Phase 1 Small molecular drug [8]
INS1009 DM1UDP3 Phase 1 NA [8]
KAR5585 DMXYN1H Phase 1 NA [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 Drug(s)
This Disease is Treated as An Indication in 2 Patented Agent(s)
Drug Name Drug ID Highest Status Drug Type REF
PMID25623274-Compound-WO2014132220C1 DMA2IMQ Patented Small molecular drug [24]
PMID25623274-Compound-WO2014132220C2 DMXEZWP Patented Small molecular drug [24]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 6 Discontinued Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Sitaxsentan DMKM5HB Withdrawn from market Small molecular drug [25]
TBC 11251 (TBC) DMFR79T Withdrawn from market Small molecular drug [26]
BMS-193884 DMODK2J Discontinued in Phase 2 Small molecular drug [27]
EDONENTAN HYDRATE DMRPUEC Discontinued in Phase 2 NA [28]
ENRASENTAN DM05F1Z Discontinued in Phase 2 Small molecular drug [29]
J-104132 DM5E6MK Discontinued in Phase 2 Small molecular drug [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 46 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
AQP1 TTSF1KH Limited Autosomal dominant [31]
BMP10 TTTG6H1 Limited Autosomal dominant [31]
CCN2 TTIL516 Limited Altered Expression [32]
ENG TTB30LE Limited Genetic Variation [33]
HLA-B TTGS10J Limited Genetic Variation [34]
KLK1 TT5T3P6 Limited Autosomal dominant [31]
PDE5A TTJ0IQB Limited Biomarker [35]
PDGFD TTSN0GA Limited Autosomal dominant [31]
NOTCH3 TTVX7IA Disputed Autosomal dominant [31]
SMAD1 TT9GR53 Disputed Autosomal dominant [31]
GGCX TT76OLR Moderate Autosomal dominant [31]
ACE2 TTUI5H7 Strong Biomarker [36]
APLN TT87D3J Strong Altered Expression [37]
APLNR TTJ8E43 Strong Biomarker [37]
ASIC1 TTRJYB6 Strong Biomarker [38]
BMP10 TTTG6H1 Strong Biomarker [39]
CAPN2 TTG5QB7 Strong Altered Expression [40]
CCL21 TTLZK1U Strong Biomarker [41]
CES1 TTMF541 Strong Biomarker [42]
EIF2AK4 TT9U4EP Strong Genetic Variation [43]
EPAS1 TTWPA54 Strong Genetic Variation [44]
FOSL2 TT689IR Strong Altered Expression [45]
GDF15 TT4MXVG Strong Biomarker [46]
GDF2 TTAP4T1 Strong Altered Expression [39]
HTR2B TT0K1SC Strong Biomarker [47]
ITPR2 TTK9OV3 Strong Biomarker [48]
KCNA5 TTW0CMT Strong Genetic Variation [49]
LGALS3 TTFPQV7 Strong Biomarker [50]
LONP1 TTM1VPZ Strong Biomarker [51]
MCAM TTHRE05 Strong Biomarker [52]
METAP2 TTZL0OI Strong Altered Expression [53]
NOX4 TTQRBSJ Strong Biomarker [54]
NPPC TTRK0B9 Strong Biomarker [55]
PAH TTGSVH2 Strong Genetic Variation [56]
PTGIR TTOFYT1 Strong Biomarker [57]
PTGIS TTLXKZR Strong Genetic Variation [58]
TPH1 TTZSJHV Strong Altered Expression [59]
TPT1 TT3PTB6 Strong Biomarker [60]
UTRN TTNO1VA Strong Biomarker [61]
VHL TTEMWSD Strong Biomarker [62]
BMPR2 TTGKF90 Definitive Autosomal dominant [31]
CAV1 TTXUBN2 Definitive Autosomal dominant [31]
GDF2 TTAP4T1 Definitive Autosomal dominant [31]
KCNK3 TTGR91N Definitive Autosomal dominant [31]
KDR TTPFN62 Definitive Autosomal dominant [31]
SMAD9 TTX8EBV Definitive Autosomal dominant [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 DTT(s)
This Disease Is Related to 1 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
ABCC8 DTI58LU Moderate Autosomal dominant [31]
------------------------------------------------------------------------------------
This Disease Is Related to 3 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CHST3 DEQIZP2 Limited Genetic Variation [63]
CHDH DEAHED0 Strong Genetic Variation [64]
CRMP1 DE0EUXB Strong Biomarker [61]
------------------------------------------------------------------------------------
This Disease Is Related to 68 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
TOPBP1 OT6UPZPD No Known Autosomal dominant [31]
AQP1 OTX5MYX9 Limited Autosomal dominant [31]
BMP10 OTA3QKKG Limited Autosomal dominant [31]
FBLN2 OTEHR7N7 Limited Autosomal dominant [31]
ITSN1 OT8YF3S5 Limited Biomarker [65]
KLF2 OTIP1UFX Limited Autosomal dominant [31]
KLK1 OTFGP3UR Limited Autosomal dominant [31]
PDGFD OT5WRWRJ Limited Autosomal dominant [31]
SAFB OTGRV2LW Limited Biomarker [66]
SNRPD1 OTWKZV4E Limited Biomarker [67]
BMPR1A OTQOA4ZH Disputed Unknown [31]
BMPR1B OTGFN0OD Disputed Unknown [31]
NOTCH3 OTMVVA7F Disputed Autosomal dominant [31]
SMAD1 OTQSHR25 Disputed Autosomal dominant [31]
SMAD4 OTWQWCKG Disputed Autosomal dominant [31]
ABCC8 OTCWQ54I Moderate Autosomal dominant [31]
GGCX OTE0FNAP Moderate Autosomal dominant [31]
TET2 OTKKT03T Moderate Autosomal dominant [31]
ADAMTS8 OT2KFY1S Strong Biomarker [68]
ADO OTRLGQ7V Strong Genetic Variation [69]
ATOH8 OT7SY3BN Strong Biomarker [70]
BRAP OTB7BAFQ Strong Genetic Variation [71]
CHST13 OTO59SZQ Strong Genetic Variation [63]
CLIC4 OT6KTPKD Strong Altered Expression [72]
COX5A OTP0961M Strong Biomarker [73]
DAPK2 OTWODUQG Strong Biomarker [61]
DECR1 OTCDIR6X Strong Biomarker [74]
DENR OTXP9HOY Strong Biomarker [61]
EFNA1 OTU2NUA2 Strong Altered Expression [75]
EYA3 OTHLP1J3 Strong Biomarker [76]
GDF11 OTOSNMND Strong Biomarker [77]
HLA-DPA1 OT7OG7Y2 Strong Genetic Variation [78]
IFIH1 OTZA2AHA Strong CausalMutation [79]
JPH2 OTL9YH7V Strong Biomarker [80]
KCNH4 OTHJ8WTU Strong Altered Expression [81]
KCNH8 OT3I5FLB Strong Altered Expression [81]
KIRREL1 OTOA7ON7 Strong Biomarker [82]
MCU OTQZAYWQ Strong Biomarker [83]
MIEF1 OTFSP3FS Strong Biomarker [84]
MMACHC OTX0TT3W Strong Genetic Variation [85]
MUC6 OTPVL723 Strong Genetic Variation [86]
NFATC3 OTYOORME Strong Biomarker [87]
NOX1 OTZPJQCC Strong Biomarker [88]
PDK4 OTCMHMBZ Strong Biomarker [89]
PIK3C3 OTLUM9L7 Strong Biomarker [90]
PLCD4 OT14EZVB Strong Genetic Variation [91]
RNF213 OT4OVE9O Strong Genetic Variation [92]
RNPC3 OTW5MKC1 Strong Biomarker [93]
SBNO1 OTNX3RL0 Strong Biomarker [94]
SBNO2 OT1C6J3K Strong Biomarker [94]
SERPINA12 OTS1E6IP Strong Biomarker [95]
SESN2 OT889IXY Strong Biomarker [96]
SETD3 OTO5RAU2 Strong Biomarker [97]
SKIL OTNBXH32 Strong Biomarker [94]
SMURF1 OT5UIZR8 Strong Biomarker [98]
SORL1 OTQ8FFNS Strong Biomarker [99]
STIM2 OTYNXAW0 Strong Biomarker [100]
TMEM70 OTLTKYXG Strong Biomarker [101]
TRAM1 OT3I0H8E Strong Biomarker [102]
ATP13A3 OT5EGV3F Definitive Semidominant [31]
BMPR2 OTM9W547 Definitive Autosomal dominant [31]
CAV1 OTEZUR1L Definitive Autosomal dominant [31]
GDF2 OTRB5L04 Definitive Autosomal dominant [31]
KCNK3 OTWMAV6G Definitive Autosomal dominant [31]
KDR OT15797V Definitive Autosomal dominant [31]
SMAD9 OTK4M1H8 Definitive Autosomal dominant [31]
SOX17 OT9H4WWE Definitive Autosomal dominant [31]
TBX4 OTW58FG4 Definitive Autosomal dominant [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 68 DOT(s)

References

1 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 3951).
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 3494).
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 1966).
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5257).
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7552).
6 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5820).
7 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
8 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
9 ClinicalTrials.gov (NCT05649748) An Open-Label Extension Study to Assess the Safety, Tolerability, and Effectiveness of the Long-Term Use of Treprostinil Palmitil Inhalation Powder in Participants With Pulmonary Arterial Hypertension. U.S.National Institutes of Health.
10 HIF-1-alpha and survivin involved in the anti-apoptotic effect of 2ME2 after global ischemia in rats. Neurol Res. 2011 Jul;33(6):583-92.
11 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 997).
12 ClinicalTrials.gov (NCT00832507) Study of Cicletanine for Pulmonary Arterial Hypertension (PAH). U.S. National Institutes of Health.
13 ClinicalTrials.gov (NCT04053543) CXA-10 Study in Subjects With Pulmonary Arterial Hypertension. U.S. National Institutes of Health.
14 An emerging treatment option for glaucoma: Rho kinase inhibitors. Clin Ophthalmol. 2014; 8: 883-890.
15 ClinicalTrials.gov (NCT03789643) Study to Evaluate Efficacy and Safety of JTT-251 in Participants With Pulmonary Arterial Hypertension (RELIEF-PAH). U.S. National Institutes of Health.
16 ClinicalTrials.gov (NCT05764265) An Open-label Extension Study to Investigate Efficacy, Safety and Tolerability of LTP001 in Participants With Pulmonary Arterial Hypertension. U.S.National Institutes of Health.
17 ClinicalTrials.gov (NCT05612035) A Phase 2a Randomized, Placebo-Controlled Clinical Study to Evaluate the Efficacy and Safety of MK-5475 in Adults With Pulmonary Hypertension Associated With Chronic Obstructive Pulmonary Disease. U.S.National Institutes of Health.
18 ClinicalTrials.gov (NCT03795428) Long-Term, Open Label Extension Study of Pemziviptadil (PB1046) in PAH Subjects Following Completion of Study PB1046-PT-CL-0004 (VIP Extend). U.S. National Institutes of Health.
19 Emerging treatments for pulmonary arterial hypertension. Expert Opin Emerg Drugs. 2006 Nov;11(4):609-19.
20 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 56).
21 ClinicalTrials.gov (NCT00464932) Vasoactive Intestinal Peptide in COPD. U.S. National Institutes of Health.
22 Clinical pipeline report, company report or official report of MaxCyte.
23 Clinical pipeline report, company report or official report of Reviva Pharmaceuticals
24 Evaluation of WO-2014132220, selective PDGFR inhibitors for the treatment of pulmonary arterial hypertension.Expert Opin Ther Pat. 2015 Apr;25(4):493-9.
25 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 3950).
26 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
27 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800007870)
28 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800015788)
29 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800004637)
30 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800010566)
31 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
32 PCPA protects against monocrotaline-induced pulmonary arterial remodeling in rats: potential roles of connective tissue growth factor.Oncotarget. 2017 Dec 4;8(67):111642-111655. doi: 10.18632/oncotarget.22882. eCollection 2017 Dec 19.
33 Mutational and clinical analysis of the ENG gene in patients with pulmonary arterial hypertension.BMC Genet. 2016 Jun 4;17(1):72. doi: 10.1186/s12863-016-0384-3.
34 HLA markers for poor prognosis in systemic sclerosis Brazilian patients.Dis Markers. 2013;35(2):73-8. doi: 10.1155/2013/301415. Epub 2013 Jul 28.
35 The effects of oral treatment for systemic sclerosis related pulmonary arterial hypertension: A systematic review and meta-analysis.Mod Rheumatol. 2021 Jan;31(1):151-161. doi: 10.1080/14397595.2019.1704125. Epub 2020 Jan 4.
36 Angiotensin-converting enzyme 2 activation suppresses pulmonary vascular remodeling by inducing apoptosis through the Hippo signaling pathway in rats with pulmonary arterial hypertension.Clin Exp Hypertens. 2019;41(6):589-598. doi: 10.1080/10641963.2019.1583247. Epub 2019 Feb 26.
37 A novel cyclic biased agonist of the apelin receptor, MM07, is disease modifying in the rat monocrotaline model of pulmonary arterial hypertension.Br J Pharmacol. 2019 May;176(9):1206-1221. doi: 10.1111/bph.14603. Epub 2019 Apr 1.
38 Revisiting the Role of TRP, Orai, and ASIC Channels in the Pulmonary Arterial Response to Hypoxia.Front Physiol. 2018 May 7;9:486. doi: 10.3389/fphys.2018.00486. eCollection 2018.
39 Characterization of GDF2 Mutations and Levels of BMP9 and BMP10 in Pulmonary Arterial Hypertension.Am J Respir Crit Care Med. 2020 Mar 1;201(5):575-585. doi: 10.1164/rccm.201906-1141OC.
40 Activation of Calpain-2 by Mediators in Pulmonary Vascular Remodeling of Pulmonary Arterial Hypertension.Am J Respir Cell Mol Biol. 2016 Mar;54(3):384-93. doi: 10.1165/rcmb.2015-0151OC.
41 CCL21 as a Potential Serum Biomarker for Pulmonary Arterial Hypertension in Systemic Sclerosis.Arthritis Rheumatol. 2018 Oct;70(10):1644-1653. doi: 10.1002/art.40534. Epub 2018 Aug 30.
42 Reduced carboxylesterase 1 is associated with endothelial injury in methamphetamine-induced pulmonary arterial hypertension.Am J Physiol Lung Cell Mol Physiol. 2017 Aug 1;313(2):L252-L266. doi: 10.1152/ajplung.00453.2016. Epub 2017 May 4.
43 Novel EIF2AK4 mutations in histologically proven pulmonary capillary hemangiomatosis and hereditary pulmonary arterial hypertension.BMC Med Genet. 2019 Nov 11;20(1):176. doi: 10.1186/s12881-019-0915-7.
44 Therapeutic Targeting of Vascular Remodeling and Right Heart Failure in Pulmonary Arterial Hypertension with a HIF-2 Inhibitor.Am J Respir Crit Care Med. 2018 Dec 1;198(11):1423-1434. doi: 10.1164/rccm.201710-2079OC.
45 Unifying mechanism for different fibrotic diseases.Proc Natl Acad Sci U S A. 2017 May 2;114(18):4757-4762. doi: 10.1073/pnas.1621375114. Epub 2017 Apr 19.
46 Growth differentiation factor-15 as candidate predictor for mortality in adults with pulmonary hypertension.Heart. 2020 Mar;106(6):467-473. doi: 10.1136/heartjnl-2019-315111. Epub 2019 Sep 6.
47 Serotonin 5-HT2B receptors are required for bone-marrow contribution to pulmonary arterial hypertension.Blood. 2012 Feb 16;119(7):1772-80. doi: 10.1182/blood-2011-06-358374. Epub 2011 Dec 20.
48 Type 2 inositol 1,4,5-trisphosphate receptor inhibits the progression of pulmonary arterial hypertension via calcium signaling and apoptosis.Heart Vessels. 2019 Apr;34(4):724-734. doi: 10.1007/s00380-018-1304-4. Epub 2018 Nov 20.
49 5-HTT, BMPR2, EDN1, ENG, KCNA5 gene polymorphisms and susceptibility to pulmonary arterial hypertension: A meta-analysis.Gene. 2019 Jan 5;680:34-42. doi: 10.1016/j.gene.2018.09.020. Epub 2018 Sep 12.
50 Galectin-3 Mediates Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension.Aging Dis. 2019 Aug 1;10(4):731-745. doi: 10.14336/AD.2018.1001. eCollection 2019 Aug.
51 Elevated plasma Pim-1 and its clinical significance in patients with pulmonary arterial hypertension.Clin Exp Pharmacol Physiol. 2019 Aug;46(8):752-760. doi: 10.1111/1440-1681.13102. Epub 2019 May 29.
52 Publisher Correction: CD146-HIF-1 hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension.Nat Commun. 2019 Sep 5;10(1):4098. doi: 10.1038/s41467-019-12107-7.
53 Early treatment with fumagillin, an inhibitor of methionine aminopeptidase-2, prevents Pulmonary Hypertension in monocrotaline-injured rats.PLoS One. 2012;7(4):e35388. doi: 10.1371/journal.pone.0035388. Epub 2012 Apr 11.
54 Effect of Ambrisentan Therapy on the Expression of Endothelin Receptor, Endothelial Nitric Oxide Synthase and NADPH Oxidase 4 in Monocrotaline-induced Pulmonary Arterial Hypertension Rat Model.Korean Circ J. 2019 Sep;49(9):866-876. doi: 10.4070/kcj.2019.0006. Epub 2019 Apr 25.
55 C-Type Natriuretic Peptide Ameliorates Lipopolysaccharide-Induced Cardiac Dysfunction in Rats with Pulmonary Arterial Hypertension.Biomed Res Int. 2018 Dec 20;2018:2813025. doi: 10.1155/2018/2813025. eCollection 2018.
56 Ultrastructural Changes of the Right Ventricular Myocytes in Pulmonary Arterial Hypertension.J Am Heart Assoc. 2019 Mar 5;8(5):e011227. doi: 10.1161/JAHA.118.011227.
57 Improving Survival in Patients with Pulmonary Arterial Hypertension: Focus on Intravenous Epoprostenol.Am J Cardiovasc Drugs. 2019 Apr;19(2):99-105. doi: 10.1007/s40256-018-00319-z.
58 Functional prostacyclin synthase promoter polymorphisms. Impact in pulmonary arterial hypertension.Am J Respir Crit Care Med. 2014 May 1;189(9):1110-20. doi: 10.1164/rccm.201309-1697OC.
59 Altered gene expression in pulmonary tissue of tryptophan hydroxylase-1 knockout mice: implications for pulmonary arterial hypertension.PLoS One. 2011 Mar 25;6(3):e17735. doi: 10.1371/journal.pone.0017735.
60 Fortilin: A Potential Target for the Prevention and Treatment of Human Diseases.Adv Clin Chem. 2017;82:265-300. doi: 10.1016/bs.acc.2017.06.006. Epub 2017 Aug 7.
61 Glucagon-Like Peptide-1 Receptor Agonist Attenuates Autophagy to Ameliorate Pulmonary Arterial Hypertension through Drp1/NOX- and Atg-5/Atg-7/Beclin-1/LC3 Pathways.Int J Mol Sci. 2019 Jul 12;20(14):3435. doi: 10.3390/ijms20143435.
62 Dysregulation of the HIF pathway due to VHL mutation causing severe erythrocytosis and pulmonary arterial hypertension.Blood. 2011 Mar 31;117(13):3699-701. doi: 10.1182/blood-2010-12-327569.
63 CHST3 and CHST13 polymorphisms as predictors of bosentan-induced liver toxicity in Japanese patients with pulmonary arterial hypertension.Pharmacol Res. 2018 Sep;135:259-264. doi: 10.1016/j.phrs.2018.08.011. Epub 2018 Aug 15.
64 Predictors of operability in children with severe pulmonary hypertension associated with congenital heart disease.Chin Med J (Engl). 2019 Apr 5;132(7):811-818. doi: 10.1097/CM9.0000000000000145.
65 Intersectin-1s deficiency in pulmonary pathogenesis.Respir Res. 2017 Sep 6;18(1):168. doi: 10.1186/s12931-017-0652-4.
66 Autoantibody to scaffold attachment factor B (SAFB): A novel connective tissue disease-related autoantibody associated with interstitial lung disease.J Autoimmun. 2017 Jan;76:101-107. doi: 10.1016/j.jaut.2016.09.006. Epub 2016 Sep 25.
67 Anti-SmD1 antibodies are associated with renal disorder, seizures, and pulmonary arterial hypertension in Chinese patients with active SLE.Sci Rep. 2017 Aug 8;7(1):7617. doi: 10.1038/s41598-017-08099-3.
68 ADAMTS8 Promotes the Development of Pulmonary Arterial Hypertension and Right Ventricular Failure: A Possible Novel Therapeutic Target.Circ Res. 2019 Oct 25;125(10):884-906. doi: 10.1161/CIRCRESAHA.119.315398. Epub 2019 Sep 26.
69 Interventional re-opening of a PDA for reverse potts shunt circulation after ADO i implantation in a child.Catheter Cardiovasc Interv. 2017 Mar 1;89(4):E133-E136. doi: 10.1002/ccd.26680. Epub 2016 Aug 12.
70 The ALK-1/SMAD/ATOH8 axis attenuates hypoxic responses and protects against the development of pulmonary arterial hypertension.Sci Signal. 2019 Nov 12;12(607):eaay4430. doi: 10.1126/scisignal.aay4430.
71 Role of BRCA1-associated protein (BRAP) variant in childhood pulmonary arterial hypertension.PLoS One. 2019 Jan 31;14(1):e0211450. doi: 10.1371/journal.pone.0211450. eCollection 2019.
72 CLIC4/Arf6 Pathway.Circ Res. 2019 Jan 4;124(1):52-65. doi: 10.1161/CIRCRESAHA.118.313705.
73 Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system.Br J Pharmacol. 2019 Apr;176(8):1038-1050. doi: 10.1111/bph.14167. Epub 2018 Apr 14.
74 Pulmonary Arterial Hypertension and Endothelial Dysfunction Is Linked to NADPH Oxidase-Derived Superoxide Formation in Venous Thrombosis and Pulmonary Embolism in Mice.Oxid Med Cell Longev. 2018 Jun 10;2018:1860513. doi: 10.1155/2018/1860513. eCollection 2018.
75 RNA Sequencing Analysis Detection of a Novel Pathway of Endothelial Dysfunction in Pulmonary Arterial Hypertension.Am J Respir Crit Care Med. 2015 Aug 1;192(3):356-66. doi: 10.1164/rccm.201408-1528OC.
76 The EYA3 tyrosine phosphatase activity promotes pulmonary vascular remodeling in pulmonary arterial hypertension.Nat Commun. 2019 Sep 12;10(1):4143. doi: 10.1038/s41467-019-12226-1.
77 Growth Differentiation Factor 11 Promotes Abnormal Proliferation and Angiogenesis of Pulmonary Artery Endothelial Cells.Hypertension. 2018 Apr;71(4):729-741. doi: 10.1161/HYPERTENSIONAHA.117.10350. Epub 2018 Feb 20.
78 Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis.Lancet Respir Med. 2019 Mar;7(3):227-238. doi: 10.1016/S2213-2600(18)30409-0. Epub 2018 Dec 5.
79 An extremely severe case of Aicardi-Goutires syndrome 7 with a novel variant in IFIH1.Eur J Med Genet. 2020 Feb;63(2):103646. doi: 10.1016/j.ejmg.2019.04.003. Epub 2019 Apr 6.
80 Colchicine Depolymerizes Microtubules, Increases Junctophilin-2, and Improves Right Ventricular Function in Experimental Pulmonary Arterial Hypertension.J Am Heart Assoc. 2017 May 31;6(6):e006195. doi: 10.1161/JAHA.117.006195.
81 A novel p38 mitogen-activated protein kinase/Elk-1 transcription factor-dependent molecular mechanism underlying abnormal endothelial cell proliferation in plexogenic pulmonary arterial hypertension.J Biol Chem. 2013 Sep 6;288(36):25701-25716. doi: 10.1074/jbc.M113.502674. Epub 2013 Jul 26.
82 Targeting Neph1 and ZO-1 protein-protein interaction in podocytes prevents podocyte injury and preserves glomerular filtration function.Sci Rep. 2017 Sep 21;7(1):12047. doi: 10.1038/s41598-017-12134-8.
83 MicroRNA-138 and MicroRNA-25 Down-regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype.Am J Respir Crit Care Med. 2017 Feb 15;195(4):515-529. doi: 10.1164/rccm.201604-0814OC.
84 Epigenetic Dysregulation of the Dynamin-Related Protein 1 Binding Partners MiD49 and MiD51 Increases Mitotic Mitochondrial Fission and Promotes Pulmonary Arterial Hypertension: Mechanistic and Therapeutic Implications.Circulation. 2018 Jul 17;138(3):287-304. doi: 10.1161/CIRCULATIONAHA.117.031258. Epub 2018 Feb 5.
85 Reversible pulmonary arterial hypertension in cobalamin-dependent cobalamin C disease due to a novel mutation in the MMACHC gene.Eur J Pediatr. 2014 Dec;173(12):1707-10. doi: 10.1007/s00431-014-2330-6. Epub 2014 May 24.
86 Identification of a low frequency missense mutation in MUC6 contributing to pulmonary artery hypertension by whole-exome sequencing.Pulm Circ. 2018 Jul-Sep;8(3):2045894018794374. doi: 10.1177/2045894018794374. Epub 2018 Jul 26.
87 Sarpogrelate attenuates pulmonary arterial hypertension via calcium/calcineurin axis.Front Biosci (Landmark Ed). 2019 Jan 1;24(4):607-615. doi: 10.2741/4739.
88 Serotonin Signaling Through the 5-HT(1B) Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension.Arterioscler Thromb Vasc Biol. 2017 Jul;37(7):1361-1370. doi: 10.1161/ATVBAHA.116.308929. Epub 2017 May 4.
89 Increased Pyruvate Dehydrogenase Kinase 4 Expression in Lung Pericytes Is Associated with Reduced Endothelial-Pericyte Interactions and Small Vessel Loss in Pulmonary Arterial Hypertension.Am J Pathol. 2016 Sep;186(9):2500-14. doi: 10.1016/j.ajpath.2016.05.016. Epub 2016 Jul 25.
90 SUMOylation of Vps34 by SUMO1 promotes phenotypic switching of vascular smooth muscle cells by activating autophagy in pulmonary arterial hypertension.Pulm Pharmacol Ther. 2019 Apr;55:38-49. doi: 10.1016/j.pupt.2019.01.007. Epub 2019 Jan 28.
91 The P2-receptor-mediated Ca(2+) signalosome of the human pulmonary endothelium - implications for pulmonary arterial hypertension.Purinergic Signal. 2019 Sep;15(3):299-311. doi: 10.1007/s11302-019-09674-1. Epub 2019 Aug 8.
92 Poor outcomes in carriers of the RNF213 variant (p.Arg4810Lys) with pulmonary arterial hypertension.J Heart Lung Transplant. 2020 Feb;39(2):103-112. doi: 10.1016/j.healun.2019.08.022. Epub 2019 Sep 2.
93 The impact of anti-U1-RNP positivity: systemic lupus erythematosus versus mixed connective tissue disease.Rheumatol Int. 2018 Jul;38(7):1169-1178. doi: 10.1007/s00296-018-4059-4. Epub 2018 May 23.
94 A novel S-nitrosocaptopril monohydrate for pulmonary arterial hypertension: H(2)O and -SNO intermolecular stabilization chemistry.Free Radic Biol Med. 2018 Dec;129:107-115. doi: 10.1016/j.freeradbiomed.2018.09.020. Epub 2018 Sep 15.
95 Visceral adipose tissue-derived serine protease inhibitor prevents the development of monocrotaline-induced pulmonary arterial hypertension in rats.Pflugers Arch. 2017 Nov;469(11):1425-1432. doi: 10.1007/s00424-017-2043-6. Epub 2017 Aug 3.
96 Human Mesenchymal Stem Cell Therapy Reverses Su5416/Hypoxia-Induced Pulmonary Arterial Hypertension in Mice.Front Pharmacol. 2018 Dec 6;9:1395. doi: 10.3389/fphar.2018.01395. eCollection 2018.
97 Forkhead box M1 transcription factor: a novel target for pulmonary arterial hypertension therapy.World J Pediatr. 2020 Apr;16(2):113-119. doi: 10.1007/s12519-019-00271-1. Epub 2019 Jun 12.
98 MicroRNA-424(322) as a new marker of disease progression in pulmonary arterial hypertension and its role in right ventricular hypertrophy by targeting SMURF1.Cardiovasc Res. 2018 Jan 1;114(1):53-64. doi: 10.1093/cvr/cvx187.
99 Deletion of LR11 Attenuates Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation With Medial Thickening in Mice.Arterioscler Thromb Vasc Biol. 2016 Sep;36(9):1972-9. doi: 10.1161/ATVBAHA.116.307900. Epub 2016 Aug 4.
100 STIM2 (Stromal Interaction Molecule 2)-Mediated Increase in Resting Cytosolic Free Ca(2+) Concentration Stimulates PASMC Proliferation in Pulmonary Arterial Hypertension.Hypertension. 2018 Mar;71(3):518-529. doi: 10.1161/HYPERTENSIONAHA.117.10503. Epub 2018 Jan 22.
101 Persistent pulmonary arterial hypertension in the newborn (PPHN): a frequent manifestation of TMEM70 defective patients.Mol Genet Metab. 2014 Mar;111(3):353-359. doi: 10.1016/j.ymgme.2014.01.001. Epub 2014 Jan 8.
102 Involvement of Ca(2+)-activated K(+) channel 3.1 in hypoxia-induced pulmonary arterial hypertension and therapeutic effects of TRAM-34 in rats.Biosci Rep. 2017 Jul 27;37(4):BSR20170763. doi: 10.1042/BSR20170763. Print 2017 Aug 31.